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Nonlinear elliptic PDEs

The studied class: PDEs with divergence structure

Linear case:

−div B = ρ B = k∇u
↘ ↙

−div
(
k∇u

)
= ρ
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Nonlinear elliptic PDEs

The studied class: PDEs with divergence structure

Nonlinear case:
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↘ ↙
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Nonlinear elliptic PDEs

The studied class: PDEs with divergence structure

Nonlinear case more generally: + extra terms; higher order ...

xx
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Nonlinear elliptic PDEs

Some typical stationary models:

Elasto-plastic torsion in 2D
Electromagnetic potentials (nonlinear stationary Maxwell
equation)
Subsonic flow
Electrorheology
Minimal surfaces
Glaciologic flow
Deformation of plates
Gao beam model
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The steps of modelling

Physical, chemical etc. model of a real process
↓

Mathematical model (e.g. PDE)
↓

Numerical model (e.g. algebraic system)
↓

Computer model
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Approach: abstract spaces

Background for the numerical solution:

Hilbert or Banach space
operator theory

Why does this help?

Well-posedness, weak solution
⇒ natural base space (Sobolev space)
Finite element method (FEM)
principle of J. Neuberger (Sobolev gradients):
numerical difficulties ↔ analytic difficulties



Motivation Theoretical background Elliptic PDE types Numerical applications Recent joint work

Approach: abstract spaces

↓
Mathematical model (e.g. PDE)

↓
Numerical model

↓



Motivation Theoretical background Elliptic PDE types Numerical applications Recent joint work

Approach: abstract spaces

↓
Mathematical model (e.g. PDE)

↓
Numerical model

↓



Motivation Theoretical background Elliptic PDE types Numerical applications Recent joint work

Newton type iterative methods

Numerical solution of elliptic problems:

discretization (we use FEM)
→ a nonlinear algebraic system Fh(uh) = 0
→ needs iterative solution

Our starting point: we study the underlying PDE F (u) = 0
→ define an iterative method in function space
→ project it into the FEM subspace
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Numerical solution of elliptic problems:

discretization (we use FEM)
→ a nonlinear algebraic system Fh(uh) = 0
→ needs iterative solution

Our starting point: we study the underlying PDE F (u) = 0
→ define an iterative method in function space
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Newton type iterative methods

Two typical approaches:

Newton’s method Sobolev gradients
(fast but costly): /simple preconditioning

(slow but cheap):

un+1 := un − F ′(un)−1F (un) un+1 := un − B−1F (un)
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Newton type iterative methods

Newton’s method Sobolev gradients
(fast but costly): /simple preconditioning

(slow but cheap):

un+1 := un − F ′(un)−1︸ ︷︷ ︸
to be approximated:

F (un) un+1 := un − B−1︸︷︷︸
to be varied:

F (un)

↘ ↙
un+1 := un − B−1

n F (un)

quasi-Newton method = variable preconditioning

Choice of Bn? A balance between cost and speed.

Algebraic choices (Davidon-Fletcher-Powell, Broyden...):
they use matrix properties and not the PDE
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The general iteration scheme (quasi-Newton)

Consider an operator equation

F (u) = 0 .

Construction of the iteration:
Let Bn be linear operators such that, for some Mn ≥ mn > 0,

mn〈Bnh, h〉 ≤ 〈F ′(un)h, h〉 ≤ Mn〈Bnh, h〉 (∀h).

Choose u0 and then define the sequence

un+1 = un −
2

Mn + mn
B−1
n F (un) (n ∈ N).
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The general iteration scheme (quasi-Newton)

"Main convergence theorems": under proper conditions on F ,

lim sup
‖F (un+1)‖
‖F (un)‖

≤ lim sup
Mn −mn

Mn + mn
=:Q < 1 .

Special (extreme) cases:

Simple preconditioning (Sobolev gradient method):
Bn ≡ B ⇒ Mn ≡ M, mn ≡ m, Q = M−m

M+m
.

Newton iteration:
Bn = F ′(un) ⇒ Mn = 1, mn = 1, Q = 0 (superlinear).

Intermediate choice? Problem-dependent.
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Some conditions

1. Uniformly elliptic problems in Hilbert space

(i) F : H → H has a bihemicontinuous Gâteaux derivative.

(ii) For any u ∈ H the operator F ′(u) is self-adjoint.

(iii) ∃ constants µ1 ≥ µ2 > 0:

µ2‖h‖2 ≤ 〈F ′(u)h, h〉 ≤ µ1‖h‖2 (∀u, h ∈ H).

(iv) F ′ is Lipschitz continuous.

[ with I. Faragó]
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Some conditions – extensions

2. Non-uniformly elliptic problems in Banach space

(i) F : X → X ′ has a bihemicontinuous Gâteaux derivative.

(ii) For any u ∈ X the operator F ′(u) is symmetric.

(iii) ∃ functions λ : R+ → R+, ↘, and Λ : R+ → R+, ↗:

λ(‖u‖) ‖h‖2 ≤ 〈F ′(u)h, h〉 ≤ Λ(‖u‖) ‖h‖2 (∀u, h ∈ X )

and
∫ +∞

0
λ(t) dt = +∞.

(iv) F ′ is locally Lipschitz continuous.

[ with B. Borsos]
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Some conditions – extensions

3. Nonsmooth problems in Hilbert space

(i) F : H → H is Lipschitz continuous and uniformly monotone.

For all u ∈ H ∃ a bounded self-adjoint linear operator
F o(u) : H → H with the conditions below:

(ii) ∃ constants µ1 ≥ µ2 > 0:

µ2‖h‖2 ≤ 〈F o(u)h, h〉 ≤ µ1‖h‖2 (∀u, h ∈ H).

(iii) ∀u ∈ H ∃ δu > 0 and Lu > 0 such that

‖F (v)−F (u)−F o(v)(v−u)‖ ≤ Lu ‖u−v‖2 (if ‖u−v‖ ≤ δu).

Restrictions on mn, Mn: see later.

[with S. Sysala, M. Béres]
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Some conditions – extensions

4. Non-selfadjoint problems in Hilbert space

F ′(u) need not be self-adjoint (non-potential problems).

Non-spectral conditions:

For the operators:

〈F ′(u)h, h〉 ≤ µ1‖h‖2 replaced by 〈F ′(u)h, v〉 ≤ µ1‖h‖‖v‖

For the preconditioning:

〈F ′(un)h, h〉 ≤ Mn〈Bnh, h〉 repl. by 〈F ′(un)h, v〉 ≤ Mn‖h‖Bn‖v‖Bn

[ with S. Castillo, in progress]
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Uniformly elliptic nonlinear PDEs

(i) Elasto-plastic torsion in 2D cross-sections:

−div
(
g(|∇u|)∇u

)
= 2ω in Ω (+b.c .)

Uniform ellipticity:

0 < µ1 ≤ g(T ) ≤ (g(T )T )′ ≤ µ2

(ii) Electromagnetic potential (nonlinear stationary 2D Maxwell
eqn)

−div
(
a(|∇u|2)∇u

)
= ρ in Ω (+b.c .)

Uniform ellipticity:

0 < µ1 ≤ a(r2) ≤ (a(r2)r)′ ≤ µ2

⇒ These problems are well-posed in the real Hilbert space H1
0 (Ω)
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Uniformly elliptic nonlinear PDEs

Abstract formulation.

Weak form: find u ∈ H1
0 (Ω) such that∫

Ω
a(|∇u|2)∇u · ∇v −

∫
Ω
gv = 0 (∀v ∈ H1

0 (Ω))

∼ operator equation F (u) = 0 in H := H1
0 (Ω)

Uniform ellipticity:

µ1‖h‖2 ≤ 〈F ′(u)h, h〉 ≤ µ2‖h‖2 (∀h ∈ H)

+ local Lipschitz: → conditions that ensure the "main theorem".
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Uniformly elliptic nonlinear PDEs

Further models with the same operator properties.

(iii) Deformation of elastic plates (4th order problem): div2
(
g(E (D2u)) D̃2u

)
= α

u|∂Ω = ∂2u
∂ν2

∣∣
∂Ω

= 0 ,
where:

modified Hessian: D̃2u =

(
∂2u
∂x2 + 1

2
∂2u
∂y2

1
2
∂2u
∂x∂y

1
2
∂2u
∂x∂y

∂2u
∂y2 + 1

2
∂2u
∂x2

)
;

matrix divergence: div2
(a b
b d

)
= ∂2a

∂x2 + 2 ∂2b
∂x∂y + ∂2d

∂y2 .

Uniform ellipticity:

0 < µ1 ≤ g(r2) ≤ (g(r2)r)′ ≤ µ2 .
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Uniformly elliptic nonlinear PDEs

(iv) Nonlinear elasticity systems.
− div Ti (x , ε(u)) = ϕi (x) in Ω

Ti (x , ε(u)) · ν = γi (x) on ΓN

ui = 0 on ΓD

 (i = 1, 2, 3).

Stress-strain tensor: T : Ω× R3×3 → R3×3,

T (x ,A) = 3k(x , |volA|2) volA + 2µ(x , |devA|2) devA,

where k = bulk modulus, µ = Lamé’s coefficient.

Uniform ellipticity:

µ1|B|2 ≤ C(x ,A)B : B ≤ T ′A(x ,A)B : B ≤ C(x ,A)B : B ≤ µ2|B|2 .
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Nonsmooth PDEs

Nonlinear elasto-plasticity systems: similar form as before,
− div Ti (x , ε(u)) = ϕi (x) in Ω

Ti (x , ε(u)) · ν = γi (x) on ΓN

ui = 0 on ΓD

 (i = 1, 2, 3)

with
T (x ,A) = 3k(x) volA + 2µ(x , |devA|2) devA,

but now µ is Lipschitz continuous and only piecewise C 1.

(Details later)
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Non-uniformly elliptic nonlinear PDEs

(v) An electrorheologic model: electric potential in a stationary
fluid

−div
(
(χ1 + χ2|∇u|2) ∇u

)
= g .

(vi) A parallel sided slab in glaciology:

−div
(

2
T0+
√

T 2
0 +|∇u|

∇u
)

= P,

(vii) Subsonic flow:

−div
((

1 +
1
5

(M2
∞ − |∇u|2

)5/2 ∇u) = 0 .

(viii) Minimal surface:

−div
( ∇u√

1 + |∇u|2
)

= 0 .
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Non-uniformly elliptic nonlinear PDEs

Function space: X := W 1,p(Ω)

Non-uniform ellipticity:

λ(‖u‖)‖h‖2 ≤ 〈F ′(u)h, h〉 ≤ Λ(‖u‖)‖h‖2 (∀h ∈ X )

where λ and Λ are decreasing resp. increasing functions;

+ lower restriction:
∫ +∞
0 λ(t) dt = +∞

+ local Lipschitz

→ these conditions also ensure the "main theorem".
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The choice of Bn

(i) Consider the example class (2nd order PDE){
−div

(
a(|∇u|2)∇u

)
= g

u|∂Ω = 0 .

FEM stiffness matrices:

(a) Newton linearization:

〈F ′(un)ϕi , ϕj〉 =

=

∫
Ω
a(|∇un|2)∇ϕi · ∇ϕj + 2 a′(|∇un|2)(∇un · ∇ϕi ) (∇un · ∇ϕj)

(b) The operators Bn (quasi-Newton/var. prec.):

〈Bnϕi , ϕj〉 =

∫
Ω
b(|∇un|2)∇ϕi · ∇ϕj (where b ≈ a, a′)
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The choice of Bn

The operators Bn:

〈Bnϕi , ϕj〉 =

∫
Ω
b(|∇un|2)∇ϕi · ∇ϕj (where b ≈ a, a′)

i.e. b(|∇un|2) is a scalar coefficient

Some possibilities:
Sobolev gradient: b ≡ const.

frozen coefficient: b = a

improved approximation: a(r2) ≤ b(r2) ≤
(
a(r2)r

)′
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The choice of Bn

(ii) 4th order PDE (like elastic plates):

〈Bnϕi , ϕj〉 =

∫
Ω
w(E (D2un)) D̃2ϕi : D̃2ϕj (where b ≈ a, a′)

i.e. w(E (D2un)) is a scalar coefficient.
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The choice of Bn

(iii) Reaction-convection-diffusion systems (ongoing work).

Time-discretized parabolic transport system on a time layer:

−K∆ui + bi · ∇ui +
(
Ri (x , u1, . . . , u`) + 1

τ ui

)
= 1

τ u
prev
i

+ b.c.

(for i = 1, . . . , `, where ` can be large)
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The choice of Bn

FEM stiffness matrices:

F ′(un) ∼


L11
n L12

n . . . . . . L1`
n

L21
n L22

n . . . . . . L2`
n

. . . . . . . . . . . . . . .
L`1n L`2n . . . . . . L``n
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The choice of Bn

FEM stiffness matrices:

Bn ∼


S1
h 0 . . . . . . 0
0 S2

h 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . 0 S`h
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Numerical applications – Model 1: Gao beam

Gao’s model for a nonlinear Euler–Bernoulli type beam:

EI uIV − Eα(u′)
2
u′′ + kFu = f in J := [0, b].

[papers of Gao, Machalova, ...]

Constants:
E > 0: elastic modulus
I > 0: moment of inertia for the cross-section
h > 0: thickness; ν > 0: Poisson ratio
α = 3h(1− ν2)

kF > 0: foundation stiffness coefficient
q: transverse distributed load; f = (1− ν2)q
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Model 1: Gao beam

Reformulation of the eqn: here (u′)2u′′ = 1
3

(
(u′)3)′ ⇒

uIV − β
(
(u′)3)′ + ku = g

Clamped boundary conditions: u(0) = u′(0) = u(b) = u′(b) = 0

Weak form: find u ∈ H2
0 (J) satisfying∫ b

0

(
u′′v ′′ + β(u′)3v ′ + kuv

)
=

∫ b

0
gv (∀v ∈ H2

0 (J)).
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Model 1: Gao beam

Properties of the linearized operator:

Ellipticity (upper non-uniform):

‖h‖2H2
0
≤ 〈F ′(u)h, h〉H2

0
≤ Λ(‖u‖H2

0
) ‖h‖2H2

0
(∀u, h ∈ Vh),

where Λ(t) = 1 + kC 4
2 + 3βC 4

4 t
2;

Local Lipschitz continuity:

‖F ′(u)−F ′(v)‖ ≤ L(max{‖u‖H2
0
, ‖v‖H2

0
}) ‖u−v‖H2

0
(∀u, h ∈ Vh),

where L(t) = 6C 4
4βt.



Motivation Theoretical background Elliptic PDE types Numerical applications Recent joint work

Model 1: Gao beam

Quasi-Newton iteration:

un+1 := un − σn zn ,

where σn > 0 const.,
and zn solves the linear problem:

z IVn − wnz
′′
n + kzn︸ ︷︷ ︸

preconditioning operator on zn

= rn (residual) + b.c.

where wn > 0 is a constant, e.g. wn := 3β
2 max(u′n)2.

Stiffness matrix:

K + wn M (where K ∼ z IV + kz , M ∼ z ′′)
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Model 1: Gao beam

Numerical experiments for some parameters

E = E1, ν = ν1 E = E2, ν = ν2
DOF q = q1 q = q2 q = q3 q = q4 q = q5 q = q6
8 3 4 5 3 4 5
80 3 4 5 3 4 5
800 3 4 5 3 4 5
8000 4 4 5 3 4 5

Table: Number of iterations for the quasi-Newton method: mesh
independence

Tolerance: 10−4. Materials: steel and concrete beam
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Model 1: Gao beam

Numerical experiments for some parameters

E = E1, ν = ν1 E = E2, ν = ν2
DOF q = q1 q = q2 q = q3 q = q4 q = q5 q = q6
8 0.656 0.814 0.739 0.733 0.831 0.757
80 0.570 0.679 0.603 0.654 0.722 0.648
800 0.508 0.586 0.500 0.571 0.611 0.527
8000 0.458 0.454 0.370 0.451 0.362 0.372

Table: Ratios of quasi-Newton / full Newton runtimes.

Tolerance: 10−4. Materials: steel and concrete beam
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Model 2: shallow ice in glaciology

A shallow ice model for the motion of a glacier in a valley:

−div
(
|∇u|−2/3 ∇u

)
= α , u = 0 on ΓD ,

∂u
∂n = 0 on ΓN

Here:
Ω: planar profile of the glacier
u = sliding velocity
α = A1/3, where A = 0.2 bar−3y−1 (rate factor)
−2/3 = −(n − 1)/n for n = 3 (Glen’s law)

[Fowler, Glowinski, Rappaz...]
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Model 2: shallow ice in glaciology

xxx
A shallow ice model for the motion of a glacier in a valley:

−div
(
|∇u|−2/3 ∇u

)
= α , u = 0 on ΓD ,

∂u
∂n = 0 on ΓN

Figure: A compressed profile scheme of the glacier [Fowler 2011]
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Model 2: shallow ice in glaciology

The preconditioning operators Bn:

〈Bnh, v〉 =

∫
Ω
|∇un|−2/3 ∇h · ∇v (∀h, v ∈ Vh).

→ FEM stiffness matrix:

〈Bnϕi , ϕj〉 =

∫
Ω
|∇un|−2/3 ∇ϕi · ∇ϕj

Difficulty: a singular problem. Theory only works for

〈Bnϕi , ϕj〉 =

∫
Ω

(
ε+ |∇un|2

)−1/3 ∇ϕi · ∇ϕj

but then the convergence is independent of ε!
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Model 2: shallow ice in glaciology

To exclude: ∇un |T ≡ 0 on an element T .
Unsymmetric domain/mesh:

√

xxx
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Model 2: shallow ice in glaciology

To exclude: ∇un |T ≡ 0 on an element T .
Unsymmetric domain/mesh:

√

Numerical results:

Figure: Contours of the velocity u
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Model 2: shallow ice in glaciology

To exclude: ∇un |T ≡ 0 on an element T .
Unsymmetric domain/mesh:

√

Numerical results:

DOF # iter time ratio
3394 21 0.365
12845 21 0.382
52040 21 0.426

Table: Number of iterations; ratio of quasi-Newton and full Newton
runtimes. (Tolerance: 10−4. Meshes generated by ANSYS.)
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Model 3: nonlinear heat radiation in 3D

Stationary heat conduction with nonlinear Stefan-Boltzmann
radiation boundary conditions.
The problem:

− div
(
A∇u

)
= f in Ω

u|∂Ω = u on ΓD ,

αu + νTA∇u + βu4 = g on ΓN ,

Here:
Ω ⊂ R3 bounded; ∂Ω = ΓD ∪ ΓN ;
u ≥ 0: absolute temperature;
A : an s.p.d. 3× 3 matrix of heat conductivities;
f , g ≥ 0: density of body/boundary heat sources;
α, β > 0: physical constants.
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Model 3: nonlinear heat radiation in 3D

The preconditioning operators Bn:

〈Bnh, v〉 :=

∫
Ω
G (x) ∇h ·∇v + (α0 +wn)

∫
ΓN

hv (∀v , h ∈ Vh),

→ FEM stiffness matrix:

Bn = G + (α0 + wn)M,

where:
G = weighted elliptic stiffness matrix
M = boundary mass matrix on ΓN

→ both precomputable!
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Model 3: nonlinear heat radiation in 3D

Numerical tests for some parameters; A = tridiag(µ, 1, µ).

µ = 0.2 µ = 0.4
DOF ū = 300 600 1500 ū = 300 600 1500
2940 3 4 4 3 4 4
8400 3 3 4 3 3 4
27900 3 3 4 3 3 4
65600 3 3 4 3 3 4

Table: Number of quasi-Newton iterations.
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Model 3: nonlinear heat radiation in 3D

Numerical tests for some parameters; A = tridiag(µ, 1, µ).

µ = 0.2 µ = 0.4
DOF ū = 300 600 1500 ū = 300 600 1500
2940 0.9009 1.1895 0.8843 0.8884 1.1850 0.8881
8400 0.8863 0.8819 0.8855 0.8923 0.8728 0.8830
27900 0.9095 0.9082 0.9056 0.9048 0.9199 0.9029
65600 0.9086 0.9083 0.9103 0.9068 0.9126 0.9108

Table: Ratio of runtimes of quasi-Newton and full Newton for tolerance
ε = 10−6.
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Model 3: nonlinear heat radiation in 3D

Numerical tests: heat colourmaps.
(DoF = 65600, ū = 300, µ = 0.4)

Figure: The numerical solution on the whole cube and on ΓN , respectively.
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Model 3: nonlinear heat radiation in 3D

Numerical tests: heat colourmaps.
(DoF = 65600, ū = 300)

Figure: The effect of anisotropy: µ = 0, µ = 0.2, µ = 0.4.
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Model 4: excursion – reaction-diffusion equations

A stationary reaction-diffusion problem with isothermal reaction:

−∆u + kuγ = 0,
u|∂Ω = u0 > 0,

where 0 < γ < 1. [Diaz, Gomez, Castro,...]

Singularity: f (u) := kuγ is
not differentiable
not Lipschitz

⇒ "dead core" phenomenon: u may be ≡ 0 in parts of Ω

(altogether u ≥ 0)
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Model 4: excursion – reaction-diffusion equations

Iteration: Sobolev gradient method (Newton not applicable)

Some test results (γ = 1
2 , k = 80) – shape of the dead core:

Figure: Square domain, u0(x , y) = 1
2 + sin(πxy).
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Model 4: excursion – reaction-diffusion equations

Iteration: Sobolev gradient method (Newton not applicable)

Some test results (γ = 1
2 , k = 80) – shape of the dead core:

Figure: Concave domain, u0 = 0.075.
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Model 5: nonlinear elasticity systems

Recent joint work with Stanislav Sysala and Michal Béreš
[Numer. Linear Alg. Appl., 2024]. The BVP:
− div Ti (x , ε(u)) = ϕi (x) in Ω

Ti (x , ε(u)) · ν = γi (x) on ΓN

ui = 0 on ΓD

 (i = 1, 2, 3).

Stress-strain tensor: T : Ω× R3×3 → R3×3,

T (x ,A) = 3k volA + 2µ(|devA|2) devA,

where k = bulk modulus, µ = Lamé’s coefficient, and

0 < µ0 ≤ µ(x , s2) ≤ µ̃0 , 0 < µ0 ≤
(
µ(x , s2)s

)′
s
≤ µ̃0 .
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Model 5: nonlinear elasticity systems

Some models for the Lamé coefficient z 7→ µ(z) (z ∈ R+):

Model 1: µ(z) := µ0 +
µ̃0 − µ0

1 + ε
√
z

Model 2: µ(z) := µ̃0 −
µ̃0 − µ0

1 + ε
√
z

where µ̃0 > µ0 > 0 are constant.

[R. Blaheta – P. Byczanski, 2001]
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Model 5: nonlinear elasticity systems

Some models for the Lamé coefficient z 7→ µ(z) (z ∈ R+):

Model 3:

µ(z) :=


µ0, 2µ0

√
z ∈ I1

(1− α)µ0 + α
2
√
z

[Y − 1
4ε(2µ0

√
z − Y − ε)2], 2µ0

√
z ∈ I2

(1− α)µ0 + α
2
√
z
Y , 2µ0

√
z ∈ I3

where I1 = [0, Y − ε], I2 = [Y − ε,Y + ε], I3 = [Y + ε,+∞), and:
α ∈ (0, 1): isotropic hardening parameter,
Y > 0: initial yield stress,
µ0 > 0: Lamé constant
ε > 0: regularization parameter.

[O. Axelsson – S. Sysala, 2015]
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Model 5: choices of Bn

Preconditioner 1:
elastic stiffness matrix with variable parameters.

〈B(1)
n h, v〉 =

∫
Ω

(
3k vol ε(h) : vol ε(v) + 2µn dev ε(h) : dev ε(v)

)
where k > 0 is constant and

µ(|dev ε(un)(x)|2) ≤ µn(x) ≤ µ(|dev ε(un)(x)|2) (x ∈ Ω),

e.g., for some 0 < δ < 1,

µn := δµ+ (1− δ)µ.
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Model 5: choices of Bn

Preconditioner 2:
elastic stiffness matrix with fixed parameters.

〈B(2)
n h, v〉 =

∫
Ω

(
3k vol ε(h) : vol ε(v) + 2µ0 dev ε(h) : dev ε(v)

)
where k, µ0 > 0 are constant.

Preconditioner 3:
motivated by separate displacements.

〈B(3)
n h, v〉 =

∫
Ω

(
λn (divh) (divv) + 2µn∇h : ∇v

)
.

where µn is from Prec 1 and λn(x) := kn(x)− 2
3 µn(x) > 0.

The convergence theory applies to all 3 preconditioners.
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Model 5: numerical tests

Strip-footing problem

Figure: Left – displacement field u, right – shear moduli field µ.

Meshes with P1 elements:
coarse: 38,400 elements
finer: 307,200 elements.
finest: 1,036,800 elements.
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Model 5: numerical tests

Comparison of iteration numbers and computational times with
tolerance 10−12. Best: elastic preconditioners.

Newton q-Newton 1 q-Newton 2 q-Newton 3
it / time [s] it / time [s] it / time [s] it / time [s]

M1 - coarse 6 / 1.5 14 / 1.1 21 / 1.0 42 / 1.7
M2 - coarse 7 / 1.6 17 / 1.2 40 / 1.4 68 / 2.4
M3 - coarse 6 / 1.3 18 / 1.4 26 / 1.0 48 / 2.4
M1 - fine 6 / 20.5 15 / 13.9 22 / 12.4 45 / 20.9
M2 - fine 7 / 19.9 17 / 13.9 40 / 17.5 59 / 23.4
M3 - fine 7 / 20.2 19 / 17.1 26 / 13.1 52 / 26.4
M1 - finest 6 / 101.7 16 / 67.9 23 / 64.3 47 / 91.9
M2 - finest 7 / 98.3 17 / 64.9 40 / 80.1 68 / 112.9
M3 - finest 7 / 95.1 19 / 76.4 27 / 70.9 54 / 118.9
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Model 6: nonsmooth elasto-plasticity systems

More recent joint work with Stansislav Sysala and Michal Béreš
[Comput. Math. Appl., 2025].
Structure of the BVP: similar to the previous one,
− div Ti (x , ε(u)) = ϕi (x) in Ω

Ti (x , ε(u)) · ν = γi (x) on ΓN

ui = 0 on ΓD

 (i = 1, 2, 3).

Stress-strain tensor: T : Ω× R3×3 → R3×3,

T (x ,A) = 3k volA + 2µ(|devA|2) devA.
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Model 6: nonsmooth elasto-plasticity systems

Nonsmooth nonlinear Lamé coefficient:

µ(z) :=

{
µ0, if 2µ0

√
z ≤ Y ,

(1− α)µ0 + α
2
√
z
Y if 2µ0

√
z ≥ Y .

New theory: convergence
with regularization;
without regularization.
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Model 6: nonsmooth elasto-plasticity systems

1. Theory with regularization.
• Using smooth operators Fε such that

‖F (u)− Fε(u)‖ ≤ Kε‖u‖ (∀u ∈ H),

where we allow limε→0 L(F ′ε) = +∞.

• Preconditioners:

m
(ε)
n 〈B(ε)

n h, h〉 ≤ 〈F ′ε(un)h, h〉 ≤ M
(ε)
n 〈B(ε)

n h, h〉

where m ≤ m
(ε)
n ≤ M

(ε)
n ≤ M (∀n ∈ N).

• Convergence:

lim sup
‖Fε(un+1)‖∗
‖Fε(un)‖∗

≤ Q < 1 .
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Model 6: nonsmooth elasto-plasticity systems

2. Theory without regularization (directly).

Use generalized derivatives F ◦(u) instead of F ′(u) as in extension 3
previously.

Convergence under some restrictions:
sup µ1

µ2
Mn−mn
Mn+mn

≤ Q < 1, or

∃ locally Lipschitz F ′ near u∗.

Implementation for the BVP
Solution of the linear problems:

deflated CG method;
separate displacement + AGMG preconditioners.
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Model 6: numerical tests

Test 1. Homogeneous material: strip-footing problem.

1m

1m

γ3

soil

x1

x3

x2

1

Preconditioners (QNVP:= Quasi-Newton/variable prec.):
QNVP1a = Prec1 from before (variable elastic stiffness mtx)

QNVP1b = freeze Bn as Bn := Bn−1 if |µn−µn−1|
|µn| ≤ 0.1

QNVP2 = Prec2 from before (fixed elastic stiffness mtx)
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Model 6: numerical tests

Test 1. Comparison of results with tolerance 10−10:
Newton iterations/cumulative CG iterations/runtime[s].

Setup α Newton QNVP1a QNVP1b QNVP2

ε = 0
0.3 6/305/194.3 12/195/195.9 12/195/141.0 16/192/146.6
0.5 6/313/192.5 15/222/238.7 15/222/174.1 22/221/175.3
0.9 7/460/257.8 49/385/774.2 49/385/442.9 115/531/511.3

ε = 0.1
0.3 5/249/155.4 12/196/197.2 12/196/114.8 16/192/148.2
0.5 6/313/193.3 15/224/238.2 15/225/140.0 22/221/176.4
0.9 7/469/256.5 47/393/731.4 47/394/388.0 115/521/521.9
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Model 6: numerical tests

Test 2. Heterogeneous material: coal–polyurethane composite

Figure: Left – the composite material, right – the displacement field
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Model 6: numerical tests

Test 2. Comparison of results with tolerance 10−10:
Newton iterations/cumulative CG iterations/runtime[s].
Mesh 1: DOF=1.094.364, Mesh 2: DOF=4.404.888 M.

Setup ε Newton q-Newton
1a

q-Newton
1b

q-Newton 2

Mesh 1

0 6/124/31.4 16/83/42.3 16/83/28.0 22/80/14.9
0.001 6/115/32.7 16/83/44.1 16/83/24.2 22/80/15.6
0.01 6/117/31.9 16/83/44.4 16/83/22.2 22/80/15.4
0.1 6/120/32.4 15/81/40.8 15/81/19.0 22/80/15.6
0.5 6/120/43.9 13/79/38.0 13/80/18.8 21/82/17.1

Mesh 2

0 6/113/126.6 16/79/181.3 16/79/117.1 22/69/59.3
0.001 6/113/128.7 16/79/180.3 16/79/103.9 22/69/58.4
0.01 6/115/126.5 16/79/179.6 16/79/95.6 22/69/58.0
0.1 6/118/129.9 15/77/169.0 15/78/77.7 22/71/59.3
0.5 6/117/182.0 14/77/168.2 14/76/81.9 21/70/70.1
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Closing remarks

Future work:

Experiments for further scalar problems:
electromagnetic potentials, non-Newtonian fluids
More general elasto-plastic operators
Survey of the QNVP approach
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Closing remarks
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Closing remarks

Thank you for your attention!
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