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Main topics of our discussions

Matrix computations using preconditioned Krylov subspace methods

Relationship with the finite dimensional spectral information

Effects of rounding errors

Operator preconditioning in infinite dimensional Hilbert spaces

Spectral decomposition of infinite dimensional operators and its finite
dimensional approximation
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Polynomial (Krylov subspace) methods, below G = B−1A, f = B−1b

Consider a linear equation G u = f in an infinite dimensional Hilbert space.
Infinite dimensional Krylov subspace methods implicitly construct at the step n
the finite dimensional approximation of G which determines the desired
approximate solution un ∈ u0 +Kn(G, r), r = f − Gu0

un := u0 + pn−1(G) r ≈ u = G−1f .

Here pn−1(λ) is the associated polynomial of degree at most n− 1 and the finite
dimensional approximation of G is obtained by the restriction and projection onto
the nth Krylov subspace

Kn(G, r) := span
{
r,Gr, . . . ,Gn−1r

}
.

A.N. Krylov (1931), Gantmakher (1934), Hestenes and Stiefel (1952),
Lanczos (1952-53); Karush (1952), Hayes (1954), Stesin (1954), Vorobyev (1958), ...
, Saad(1996), ...
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Approximation polynomial for a Krylov subspace method M

From

rM
n = f − G uM

n = r − G pM
n−1(G) r =: ϕM

n (G) r

we get the approximation polynomial

ϕM
n (λ) = 1 − λ pM

n−1(λ) ,

which is nonlinear both in G (obvious) and f (through the
orthogonality/optimality property defining the particular method M).
Clearly

ϕM
n (0) = 1 .
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1 Outline

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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1 Boundary value problem

Consider Hilbert space V with the inner product (·, ·)V : V × V → R , ‖ · ‖V ,
dual space V # of bounded linear functionals on V with the duality pairing
〈·, ·〉 : V # × V → R , and the associated Riesz map

τ : V # → V such that (τf, v)V := 〈f, v〉 for all f ∈ V #, v ∈ V.

Consider BVP represented by the equation in the functional space V #

Au = b

with a linear, bounded, coercive, and self-adjoint operator

A : V → V # , a(u, v) := 〈Au, v〉 ,

CA := sup
v∈V, ‖v‖V =1

‖Av‖V# <∞ ,

cA := inf
v∈V, ‖v‖V =1

〈Av, v〉 > 0 .
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1 Operator preconditioning defined through the Ritz map

Let a linear, bounded, coercive, and self-adjoint B , CB , cB be defined analogously,

(·, ·)B : V × V → R, (w, v)B := 〈Bw, v〉 for all w, v ∈ V ,

τB : V # → V, (τBf, v)B := 〈f, v〉 for all f ∈ V #, v ∈ V .

Instead of the original equation in the functional space we can consider the equation
in the solution space V

τB Au = τB b ,

i.e.,
B−1Au = B−1b.

Norm (spectral) equivalence of operators A and B is then often used to prove
the discretization mesh and problem parameter independence of the resulting
(spectral) condition number of the matrix representing the discretized
preconditioned operator.
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1 Example: Operator preconditioned CG method in Hilbert spaces

For n = 1, 2, . . . , nmax, (r0 = f −Ax0 ∈ V #, p0 = B−1r0 ∈ V )

αn−1 =
〈rn−1,B−1rn−1〉
〈Apn−1, pn−1〉

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn,B−1rn〉

〈rn−1,B−1rn−1〉
pn = B−1rn + βnpn−1

End

Karush (1952); Hayes (1954); Stesin (1954); Vorobyev (1958, 1965); Daniel (1967,
1967); ... ; Fortuna (1979); Ernst (2000); Axelsson and Karatson (2002); Glowinski
(2003); .... ; Zulehner (2011); Günnel, Herzog, and Sachs (2012); ...
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1 Discretization of the infinite dimensional CG gives

r0 = b−Ax0, solve Bz0 = r0, p0 = z0 . For n = 1, . . . , nmax

αn−1 =
z∗n−1rn−1

p∗n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

Bzn = rn , solve for zn

βn =
z∗nrn

z∗n−1rn−1

pn = zn + βnpn−1

Günnel, Herzog, Sachs (2014); Málek, S (2015)

The preconditioned matrix is given by B−1A , where A,B arise from the
Galerkin discretization of A,B respectively.
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1 Operator preconditioning is very important concept, however ...

Hiptmair, CMA (2006):

There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... ] awareness of this connection is key
to devising efficient solution strategies for the linear systems.

Operator preconditioning is a very general recipe [ ... ]. It is simple to apply, but
may not be particularly efficient, because in case of the [ condition number ] bound
[ ...] too large, the operator preconditioning offers no hint how to improve
the preconditioner. Hence, operator preconditioner may often achieve [ ... ]
the much-vaunted mesh independence of the preconditioner, but it may not perform
satisfactorily on a given mesh.
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1 Similar warning from an early work

Faber, Manteuffel and Parter, Adv. in Appl. Math. (1990):

For a fixed [ discretization parameter ] h , using a preconditioning strategy based
on an equivalent operator may not be superior to classical methods [ ... ]
Equivalence alone is not sufficient for a good preconditioning strategy. One must
also choose an equivalent operator for which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the
analysis [ ... ] asymptotic estimates ignore the constant multiplier. Methods with
similar asymptotic work estimates may behave quite differently in practice.
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1 Motivation: Class of elliptic PDEs, frequently used example, PCG
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Morin, Nocheto, Siebert, SIREV (2002),
linear FE, standard uniform triangulation, N = 3969 DOF.

Conjugate gradients, ICHOL preconditioning (drop-off tolerance 1e-02), κ ≈ 16;
Conjugate gradients, Laplace operator preconditioning, κ ≈ 160.
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2 Spectral representation of operators and eigenvalues

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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2 Spectral representation of the operator and the distribution function

Any linear self-adjoint operator G defined on V can be expressed using the
family of spectral projectors E(λ) in terms of the Riemann-Stieltjes integral as

G =

∫
λ dE(λ), i.e. (Gu, v) =

∫
λ d(E(λ)u, v) for all u, v ∈ V ,

Spectrum of G is defined as the complement of the resolvent set, i.e.,

sp(G) = {λ ∈ R; λI − G does not have a bounded inverse} .

The distribution function ω(λ) is defined by G and the normalized initial
residual r, ‖r‖ = 1 as

(Gr, r) =

∫
λ d(E(λ)r, r) =

∫
λ dω(λ) .

cf. von Neumann (1932, 1955) for an instructive exposition of the development of
ideas, including the concepts of discrete and continuous spectrum.
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2 Distribution function for the discretized matrix problem

λi,yi are the eigenpairs of G , ωi = |(yi,w1)|2 , (w1 = r0/‖r0‖)

...

0

1

ω1

ω2

ω3

ω4

ωN

λ1 λ2 λ3
. . . . . . λN
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2 Questions to be addressed

1 How is the distribution function associated with the preconditioned matrix
problem related to the convergence behavior of the conjugate gradient method?
What are the effects of rounding errors? What should preconditioning in the
case of self-adjoint operators aim at?

2 How can we relate the distribution function of the infinite dimensional problem
with the stepwise distribution functions defined by the associated discretized
problems? Or, what is, at least, the relationship between the spectrum of the
infinite dimensional operator (that is invertible and therefore
non-compact) and the spectra of the associated matrices arising from
discretization, which consist of discrete eigenvalues?

3 Can we approximate a priori the eigenvalues of matrices arising from
discretization?
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2 PDE eigenvalue problem

Hilbert spaces V ⊂ H, V 6= H ; the proper inclusion is substantial.

Consider a linear, bounded and self-adjoint operator

G : V → V # , a(u, v) := 〈Gu, v〉 , 〈Gu, v〉 ,= 〈Gv, u〉 .

The PDE eigenvalue problem then looks for the eigenvalue λ and the eigenvector
w ∈ V associated with G such that

a(w, v) = λ (w, v)H for all v ∈ V .

It is resolved through the construction of the compact operator S : H → V ,
such that for any t ∈ H there is a unique St ∈ V , defined for the given t by

a(St, v) = (t, v)H for all v ∈ V .
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2 PDE eigenvalue problem - for compact operators

Since S is compact on the infinite dimensional Hilbert space, it is not
invertible.

All its eigenvalues {µj} different from zero are isolated.

The eigenvalues associated with G are given by λj = 1/µj , j = 1, 2, ...

Discretization gives

Gw = λMw ,

where M is the mass (Gram) matrix of the discretization basis wrt the inner
product (w, v)H .

Babuška, Osborn (1989, 1991).
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3 Spectral information determines CG behavior

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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3 The motivating example does not match the common wisdom!
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slowing down near the maximal attainable accuracy.
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3 Back to the originals: Magnus R. Hestenes and Eduard Stiefel (1952)

Abstract. An iterative algorithm is given for solving a system Ax = k of N
linear equations in N unknowns. The solution is given in N steps. [ ... ]
Connections are made with the theory of orthogonal polynomials
and continued fractions.

Section 3. At each step the residual ri = k −Axi is computed. Normally this
vector can be used as a measure of the ”goodness” of the estimate xi. However,
this measure is not a reliable one because [ ... ] it is possible to construct cases
in which the squared residual |ri|2 increases at each step (except for the last)
while the length of the error vector decreases monotonically.

Section 8. Propagation of Rounding-Off Errors in the cg-Method.

Sections 14. - 17. Orthogonal polynomials, (Riemann)-Stieltjes integral, mass
distribution on the positive axis. [ ... ] During the following investigations we
use the Gauss mechanical quadrature as a basic tool ...

[Gauss quadrature is equivalent to solving the simplified Stieltjes problem of
moments.]

Section 18. Continued fractions.

22 / 60



3 Back to the originals: Cornelius Lanczos (1952)

In principle we have obtained a method for the solution of sets of linear
equations which is simple and logical in structure. Yet from numerical
standpoint we must not overlooked the danger of the possible accumulation of
rounding errors.

Algorithm I: purification of the initial vector of the components in the direction
of the eigenvectors corresponding to large eigenvalues using Chebyshev
polynomials.

Algorithm II: minimized iterations equivalent to CG.

The principle by which this process [meant CG] gives good attenuation is quite
different from the previous one [meant the purification using Chebyshev
polynomials]. The polynomials of this process have the peculiarity that they
attenuate due to the nearness of their zeros to those λ-values which are present
in A. The advantage of the process is its great economy.

The price we have to pay is that the successive iterations of this process are
more complicated than those of algorithm I. Another difficulty arises from the
inevitable accumulation of rounding errors.

23 / 60



3 How does our presence match the visions in these papers?

Lanczos, Hestenes and Stiefel, as well as Karush, Hayes, and Vorobyev, who
considered infinite dimensional Hilbert space setting, made many fundamental
points.

Some were painfully rediscovered (often through computational failures)
decades later, other remain unnoticed in literature, including textbooks and
monographs, until now.

The common knowledge on CG is frequently reduced to an algorithmic
description without broader context. Convergence rate is viewed through
the condition number which results in a linear upper bound based
on Chebyshev polynomials. This is sometimes combined with misguided or
even plainly wrong arguments on clustering eigenvalues.

Rounding errors are typically excluded from analysis, while the derived results
are claimed to be useful for practical computations.
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3 Shifted Chebyshev polynomials and the CG polynomials

shifted Chebyshev approximation problem: min
p∈Pn(0)

max
λ∈[λ1,λN ]

|p(λ)|

CG approximation problem ‖x− xj‖2A = ‖r0‖2
N∑
`=1

ω`
(ϕj(λ`))

2

λ`
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3 Widespread misleading and mathematically incorrect statements

Reduction of the condition number guarantees faster convergence of CG.

The condition number bound based on Chebyshev polynomials

‖x− xk‖A
‖x− x0‖A

≤ 2

(√
κ(B−1A)− 1√
κ(B−1A) + 1

)k
is usually descriptive for CG applied to symmetric positive definite (SPD)
system with an SPD preconditioner.

Theoretical mathematical evidence proving incorrectness is persistently ignored and
the misleading statements are repeatedly presented even in flagship journals.
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3 The key concept for understanding: CG as the Gauss quadrature.

At any iteration step n , CG represents the matrix formulation of the n-point
Gauss quadrature of the Riemann-Stieljes integral determined by G and r0 ,

∫ ∞
0

φ(λ) dω(λ) =

n∑
i=1

ω
(n)
i φ(θ

(n)
i ) + Rn(φ) .

For the function φ(λ) ≡ λ−1 ,

‖x− x0‖2A
‖r0‖2

= n-th Gauss quadrature +
‖x− xn‖2A
‖r0‖2

.

Consequence: CG convergence behavior is determined by the approximation
of the distribution function ω(λ) determined by the data via the sequence
of the Gauss-Christoffel step-wise distribution functions ω(n)(λ), n = 1, 2, . . .
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3 CG (Lanczos) in finite precision arithmetic?

Rounding errors seemingly irreparably destroy the underlying mathematical
structure that is based on orthogonality, and therefore the link with
Gauss-Christoffel quadrature seems to be irreparably lost as well. However,

Lanczos (with small inaccuracy also CG) in finite precision arithmetic can be seen
as the exact arithmetic Lanczos (CG) for the problem with the slightly modified
distribution function with single eigenvalues replaced by tight clusters of the same
weight.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... , Druskin,
Kniznermann, Zemke, Wülling, Meurant, ...

Reviews and updates in Meurant and S, Acta Numerica (2006); Meurant (2006);
Liesen and S (2013).
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3 Back to the elliptic PDE example
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3 Various parts of the spectra and convergence behavior
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3 Ritz values at the 5th CG iteration - LAPL
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Ritz values, 5th it

Index 1 – 1922 1923 1924 1925 1926
Eigenvalues 1 28.508 61.384 75.324 λL1926 = 79.699
Total weight 9× 10−6 ≈ 10−3 ≈ 10−3 ≈ 10−3 ≈ 10−3

Index 1927 – 1930 1931 – 2039 2040 – 2047 2048 – 3969
Eigenvalues 80.875 – 81.222 λL2039 = 81.224 81.226 – 133.94 161.45
Total weight ≈ 10−3 1.8× 10−2 8× 10−10 0.96

Why there are almost two thousand multiple eigenvalues equal to 1
as well as equal to 161.45 ?
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3 Ritz values at the 5th CG iteration - ICHOL
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Ritz values, 5th it

Index 1 2 3 4
Eigenvalues 0.074 0.095 0.231 0.233
Total weight 8× 10−5 6.4× 10−3 8× 10−7 10−8

Index 5 6 7 – 3969
Eigenvalues 0.304 λC6 = 0.311 0.321 – λC3969 = 1.1643
Total weight 6× 10−5 1.5× 10−3 0.992

Approximation of the lower end of the spectrum:
van der Sluis, van der Vorst (1986); Liesen, S (2013, Theorem 5.6.9, p. 276).
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3 Observations and a question for further investigation

Smaller condition number evidently does not guarantee faster CG convergence.

Condition number bound is descriptive for the behavior of CG only under very
particular circumstances. This conforms to a general mathematical principle:
Highly nonlinear phenomena can be approximated by linear tools only locally.

Spectrum of the preconditioned SPD matrix alone does not determine CG
convergence behavior for a particular right-hand-side and initial approximation,
but it offers much more than the trivialization of this n-dimensional nonlinear
phenomenon using only condition number.

Can we can get cheap and accurate a priori information on the whole spectrum of
the preconditioned matrices?
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4 Stimulating work that formulated the open problem (2009)

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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4 Image of the domain under k(x) is a part of the spectrum of L−1A

Consider open and bounded Lipschitz domain Ω ∈ R2 and the operator
∇ · (k(x)∇u), where k(x) : Ω→ R is a scalar real valued bounded and uniformly
positive function. Then for all x ∈ Ω at which k(x) is continuous,

k(x) ∈ sp(L−1A),

i.e., the image of the domain under a continuous coefficient function k(x)
is a subset of the spectrum of the preconditioned operator L−1A , where

A : H1
0 (Ω) 7→ H−1(Ω), 〈Au, v〉 =

∫
Ω

k(x)∇u · ∇v, u, v ∈ H1
0 (Ω),

L : H1
0 (Ω) 7→ H−1(Ω), 〈Lu, v〉 =

∫
Ω

∇u · ∇v, u, v ∈ H1
0 (Ω).

Open problem: Numerical experiments suggest that k(Ω) yields a good
approximation of the whole spectrum of L−1A and that a similar result is
valid for the spectra of the matrices arising from discretization as well.
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5 Discrete version - a priori localization of all matrix eigenvalues (2019)

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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5 Perfect match between basis functions supports and eigenvalues

Theorem.

Consider discretization via conforming FEM with the basis functions
φj , j = 1, · · · , N. Let A,L be the matrix representations of the discrete operators.
Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λN be the eigenvalues of L−1A . Let k(x) be
uniformly positive, bounded and piecewise continuous.

Then there exists a (possibly non-unique) permutation π such that the
eigenvalues of the matrix L−1A satisfy

λπ(j) ∈ k(Tj), j = 1, . . . , N,

where

k(Tj) ≡ [ inf
x∈Tj

k(x), sup
x∈Tj

k(x)] , Tj = supp(φj) , j = 1, . . . , N.

Proof:
Constructive perturbation argument and the Hall’s theorem on bipartite graphs.
The operator A can be indefinite.
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5 Numerical illustration, 4 problems, nodal values, N = 81
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5 Important remark

Let k(Tj) be constant over a patch of the discretization supports.
Then we know the associated eigenvalue exactly including the multiplicity.

The motivational problem given above:

Almost 2000 eigenvalues are equal to 1.

Almost 2000 eigenvalues are equal to 165.46.

A few eigenvalues in between, for the supports where k(x) is discontinuous.
The associated eigenvalues are localized less accurately.

Other approach by Ladecký, Pultarová and Zeman (Appl. of Math., 2020).
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5 This opens other problems

Generalizations to tensors?

Can the whole spectrum of the infinite dimensional preconditioned operator
L−1A be determined as k(Ω) ?

3D? Ivana Pultarová, unpublished note.
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6 A priori approximation of the operator spectrum

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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6 Infinite dimensional operator with symmetric tensor

Consider the operator ∇ · (K(x)∇u) with the real valued tensor function
K(x) : Ω→ R2×2 being symmetric with its entries being bounded Lebesgue
integrable functions, and with the spectral decomposition

K(x) = Q(x) Λ(x)QT (x) , x ∈ Ω ,

where

Λ(x) =

[
κ1(x) 0

0 κ2(x)

]
, QQT = QTQ = I .
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6 Spectrum and the maximal interval, including a possible gap

Theorem.

Let the symmetric tensor K(x) be continuous throughout the closure Ω .
Then the spectrum of the operator L−1A is given by the interval

sp(L−1A) = Conv(κ1(Ω) ∪ κ2(Ω)) ,

where

Conv(κ1(Ω) ∪ κ2(Ω)) = [ inf
x∈Ω

min
i=1,2

{κi(x)} , sup
x∈Ω

max
i=1,2

{κi(x)} ] .

Assuming only that the symmetric tensor K(x) is continuous at least at a single
point in Ω and supx∈Ω κ1(x) < infx∈Ω κ2(x) , then the following closed
interval belongs to the spectrum of L−1A,

[sup
x∈Ω

κ1(x), inf
x∈Ω

κ2(x)] ⊂ sp(L−1A).

Analogous statement obviously holds with interchanging κ1 and κ2.
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6 Eigenvalues of the discretized problems P1 – P3 in the paper

0 100 200 300

2

4

6

8

10

(P1)

(P2)

(P3)

P1: constant κ1 6= κ2

P2: non overlapping κ1(Ω) and κ2(Ω)
P3: overlapping κ1(Ω) and κ2(Ω)
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6 More general preconditioners

Theorem (Spectrum of the preconditioned operator).

Consider an open and bounded Lipschitz domain Ω ⊂ R2, and the operators
∇ · (k(x)∇u), and ∇ · (g(x)∇u) . Assume that the scalar functions g(x) and k(x)
are continuous throughout the closure Ω and that g(x) is, in addition, uniformly
positive. Then the spectrum of the operator B−1A equals

sp(B−1A) =

[
inf
x∈Ω

k(x)

g(x)
, sup
x∈Ω

k(x)

g(x)

]
.

The spectrum of B−1A is defined as the complement of the resolvent set, i.e.,

sp(B−1A) = {λ ∈ R; λI − B−1A does not have a bounded inverse} .
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6 Discretized problem

Theorem (Eigenvalues of the preconditioned matrices).

Let 0 < λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of B−1
n An. Let g(x) and k(x)

be bounded and piecewise continuous functions, and g(x) be, in addition,
uniformly positive. Then there exists a (possibly non-unique) permutation π such
that the eigenvalues of the matrix B−1

n An satisfy

λπ(j) ∈

[
inf
x∈Tj

k(x)

g(x)
, sup
x∈Tj

k(x)

g(x)

]
, j = 1, . . . , n,

where Tj represents the support of the jth FEM basis function.

Problem can be indefinite, preconditioner is SPD.
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6 Remaining questions

Spectrum of the infinite dimensional preconditioned operator is the complement
of the resolvent set. How do the spectra of matrices that represent discretized
preconditioned operators approximate the spectral interval of the infinite
dimensional preconditioned operator?

Relationship with preconditioning? (Instead of approximating the distribution
function, here we deal only with approximating the spectrum).

Here we do not ask about numerical approximation of the eigenvalues of the infinite
dimensional (PDE) operator, which represents a fundamentally different problem.
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7 Convergence of the matrix eigenvalues towards the whole spectrum

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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7 Abstract setting (further specific results in the paper)

Consider an infinite dimensional Hilbert space V , its dual V #, and bounded
linear operators A,B : V → V # that are self-adjoint with respect to the duality
pairing, and B is, in addition, also coercive. Consider further a sequence of
subspaces {Vn} of V satisfying the approximation property

lim
n→∞

inf
v∈Vn

‖w − v‖ = 0 for all w ∈ V.

Note that this typically yields that Galerkin discretizations of boundary value
problems are convergent.
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7 Convergence of the matrix eigenvalues to all points in the spectrum

Theorem.

Let the sequences of matrices {An} and {Bn} be defined via the standard
Galerkin discretization. Then all points in the spectrum of the preconditioned
operator

B−1A : V → V

are approximated to an arbitrary accuracy by the eigenvalues of the preconditioned
matrices in the sequence {B−1

n An}.

That is, for any point λ ∈ sp(B−1A) and any ε > 0, there exists n∗ such that
for all n ≥ n∗ the preconditioned matrix B−1

n An has an eigenvalue λj(n)

satisfying |λ− λj(n)| < ε.

Descloux, Nassif and Rappaz (1978), Kato (1980), Chatelin (1983),
Gergelits, Nielsen and S (2022)
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7 Relationship between finite and infinite spectral information

For the specific cases we can get both lower and upper semicontinuity of the infinite
dimensional spectrum. For the abstract setting used in the preceding Theorem we
get only lower semicontinuity.

Here we approximate the whole spectrum of the bounded and continuously
invertible operator B−1A : V → V on the infinite dimensional Hilbert space,
not the eigenvalues.

Puzzling question:

When the whole spectrum of the infinite dimensional operator is in the limit
approximated by the eigenvalues of the associated matrices, and the whole
spectrum is a large interval, does it mean that for refined discretizations the
performance of CG applied to the discretized problems significantly deteriorates
with the mesh refinement? Not necessarily! Motivating example in Gergelits,
Mardal, Nielsen and S (2019) offers an explanation.
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8 Spectral operator theory and PDE eigenvalue problems

1 Boundary value problem and operator preconditioning.

2 Spectrum of operators and PDE eigenvalue problem.

3 Spectral information and convergence of the conjugate gradient method.

4 Nielsen, Tveito and Hackbusch, Preconditioning by inverting the Laplacian:
An analysis of the eigenvalues (2009).

5 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of
the discrete operator.

6 Spectrum of preconditioned second order elliptic operators, generalization to
indefinite and tensor case.

7 Numerical approximation of the spectrum of self-adjoint operators in operator
preconditioning.

8 Concluding remarks.
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8 Compact PDE eigenvalue problem and approximating spectrum?

PDE eigenvalue problem is based on construction of compact solution
operators. Babuška - Osborn theory.

Spectrum of an infinite dimensional compact operator is composed of isolated
eigenvalues with zero being the single accumulation point.

Bounded continuously invertible operator on an infinite dimensional Hilbert
space is not compact.

Convergence of matrix eigenvalues to eigenvalues of a compact operator
is a different problem than approximation of the whole spectrum of invertible
operators.

The whole infinite dimensional spectrum, including its continuous part, is
relevant to the operator preconditioning, and, subsequently, to its algebraic
realization.

This seems to be new and important point.

53 / 60



8 Compact PDE eigenvalue problem and approximating spectrum?

PDE eigenvalue problem is based on construction of compact solution
operators. Babuška - Osborn theory.

Spectrum of an infinite dimensional compact operator is composed of isolated
eigenvalues with zero being the single accumulation point.

Bounded continuously invertible operator on an infinite dimensional Hilbert
space is not compact.

Convergence of matrix eigenvalues to eigenvalues of a compact operator
is a different problem than approximation of the whole spectrum of invertible
operators.

The whole infinite dimensional spectrum, including its continuous part, is
relevant to the operator preconditioning, and, subsequently, to its algebraic
realization.

This seems to be new and important point.

53 / 60



8 Compact PDE eigenvalue problem and approximating spectrum?

PDE eigenvalue problem is based on construction of compact solution
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8 Remark

The presented line of development does not allow to approximate the distribution
function ω(λ) . Assuming that all eigenspaces contribute to the distribution
function equally, we get the so-called cummulative spectral density, which is
important in physics dealing with the so-called density of states; see, e.g., Lin, Saad
and Yang, (SIREV, 2016). For the given class of problems we can cheaply
approximate this, but the infinite dimensional case is approached only as a limit of
the refinements of the discrete cases.

An amazingly beautiful results that do alow to compute (not only) the cumulative
spectral density of wide class of infinite dimensional operators are presented in the
PhD Thesis by Colbrook (Cambridge U, 2020) and in the several recent related
papers; see, in particular, a paper by Colbrook, Horning and Townsend (SIREV,
2021).
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8 Lanczos, Why Mathematics (1966)

“We will go on pondering and meditating, the great mysteries still ahead of us, we
will err and stumble on the way, and if we win a little victory, we will be jubilant
and thankful, without claiming, however, that we have done something that can
eliminate the contribution of all the millenia before us.”
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8 Wallis, Arithmetica Infinitorium (1656) (see Khruschev 2008)

“There remains this: we beech the skilled in these things, that we thought worth
showing, they will think openly receiving, an whatever it hides, worth imparting
more properly by themselves to the wider mathematical community.”
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Radim, Ivo and Owe
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Radim, Ivo and Owe

Thank you for all.
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