FACULTY OF MECHATRONICS, INFORMATICS AND INTERDISCIPLINARY STUDIES <u>TUL</u>

Poroelasticity: Theory, numerical solution and applications

SNA'23, Ostrava, 23 - 27 January 2023

Jan Stebel

Technical University of Liberec, Czech Republic

jan.stebel@tul.cz

Collaborators: J. Březina, P. Exner, M. Špetlík (TUL), J. Kružík, D. Horák (IGN)

Outline of presentation

1 Mathematical modelling of poroelasticity

2 Well-posedness

3 Approximation

4 Iterative splitting

5 Applications in rock hydro-mechanics

Mathematical modelling

POROELASTICITY | MATHEMATICAL MODELLING

What is poroelasticity I

poroelasticity = porous media flow + elasticity

What is poroelasticity II

Examples of deformable porous media

- soils, rocks
- biological tissues
- building materials

Overview of literature

- K. Terzaghi (1923, 1925)
- M. A. Biot (1941)
- F. Gassmann (1951)
- E. Detournay and A. H.-D. Cheng (1993)
- A. Verruijt (2016)

K. Terzaghi <u>(1883-1963)</u>

M. A. Biot (1905-1985)

POROELASTICITY | MATHEMATICAL MODELLING

General assumptions

- macroscopically homogeneous material
- 2 components: solid skeleton + fluid filled pores
- linearly elastic solid skeleton
- interconnected pores

porosity:

$$\phi = \frac{V_f}{V} = 1 - \frac{V_s}{V}$$

Drained and undrained deformations

Undrained deformation:

- fluid is entrapped in the domain
- stress is carried by
 - compression of fluid
 - compression of solid particles
 - rearrangement of solid skeleton

Drained deformation:

- fluid can flow in/out
- stress is carried only by solid particles and skeleton
- consolidation takes time due to low permeability

Undrained compression test

- hydraulically isolated sample
- applied stress $\Delta \sigma = \Delta \rho$

 $\underbrace{\Delta p}_{\text{pore pressure}} + \underbrace{(\Delta \sigma - \Delta p)}_{\text{effective stress}}$

volume change of porous medium:

- C_f fluid
- C_s solid particles
- C_m porous medium

Undrained compression test

Skempton pore pressure coefficient:

$$B := \frac{\Delta p}{\Delta \sigma} = \frac{C_m - C_s}{(C_m - C_s) + \phi(C_f - C_s)} \quad < 1 \qquad \text{if } C_f, C_s > 0$$

Decomposition of total stress tensor into effective stress and pore pressure:

$$\sigma = \sigma' - \alpha \rho I$$
, $\alpha = \text{Biot-Willis coefficient}$

Sign convention: compresive stress negative For isotropic media:

$$\frac{\Delta V}{V} = \varepsilon = C_m \Delta \sigma' = C_m (\Delta \sigma + \alpha \Delta p) \quad \Rightarrow \quad \alpha = 1 - \frac{C_s}{C_m}$$

POROELASTICITY | MATHEMATICAL MODELLING

Balance laws

Assumption: Time scale of mechanics \ll time scale of porous media flow Equilibrium equations for total stress:

$$-\operatorname{div} \boldsymbol{\sigma} = \boxed{-\operatorname{div} \boldsymbol{\sigma}' + lpha
abla \boldsymbol{p} = \boldsymbol{f}}$$

Hooke's law:

$$\boldsymbol{\sigma}' = \boldsymbol{C} \boldsymbol{\epsilon}(\boldsymbol{u}) \quad \Leftrightarrow \quad \boldsymbol{\epsilon}(\boldsymbol{u}) = \boldsymbol{C}^{-1} \boldsymbol{\sigma}'$$

Isotropic media:

$$C \varepsilon = 2G \varepsilon + (K - \frac{2}{3}G)(\operatorname{tr} \varepsilon)I, \qquad K = \frac{1}{C_m}$$

K...bulk modulus *G*...shear modulus

Balance laws

Conservation of mass:

$$\partial_t \left(\varphi \rho_f \right) + \operatorname{div}(\varphi \rho_f \boldsymbol{v}) = 0 \qquad \partial_t \left((1 - \varphi) \rho_s \right) + \operatorname{div}((1 - \varphi) \rho_s \boldsymbol{w}) = 0$$

Density of fluid and solid:

$$\rho_f(\boldsymbol{p}) = \rho_{f0} \exp(C_f \boldsymbol{p}) \qquad \rho_s(\boldsymbol{p}, \sigma) = \rho_{s0} \exp\left(\frac{C_s}{1-\phi}(\phi \boldsymbol{p} - \sigma)\right)$$

Conservation of mass for porous medium:

$$\operatorname{div} \boldsymbol{w} + \operatorname{div}(\boldsymbol{\varphi}(\boldsymbol{v} - \boldsymbol{w})) + \boldsymbol{\varphi}(C_f - C_s) \boldsymbol{\vartheta}_t \, \boldsymbol{p} - C_s \boldsymbol{\vartheta}_t \, \boldsymbol{\sigma} = \boldsymbol{0}$$

$$\boldsymbol{q} := \boldsymbol{\phi}(\boldsymbol{v} - \boldsymbol{w})$$

$$\boldsymbol{\sigma} := \boldsymbol{\sigma}' - \alpha \boldsymbol{p} = \operatorname{div} \boldsymbol{u} / C_m - \alpha \boldsymbol{p}$$

$$\boldsymbol{S} := \boldsymbol{\phi} C_f + (\alpha - \boldsymbol{\phi}) C_s$$

(specific discharge) (isotropic stress) (storativity)

Balance laws

Conservation of mass of porous medium (storage equation):

$$lpha \partial_t \operatorname{div} \boldsymbol{u} + S \partial_t p = -\operatorname{div} \boldsymbol{q}$$

Darcy's law:

к...permeability (generally tensor)

 μ ...fluid viscosity

e...elevation

k...hydraulic conductivity (generally tensor)

g...gravitational acceleration

Assuming $\rho_f g = 1$, the poroelasticity equations read:

$$-\operatorname{div}(\boldsymbol{C}\boldsymbol{\varepsilon}(\boldsymbol{u})) + \alpha \nabla \boldsymbol{p} = \boldsymbol{f} \\ \partial_t \left(\boldsymbol{S}\boldsymbol{p} + \alpha \operatorname{div} \boldsymbol{u} \right) - \operatorname{div}(k \nabla \boldsymbol{p}) = \boldsymbol{b} \end{cases} \text{ in } (0, T) \times \Omega$$

- Coupled linear elliptic-parabolic system with unknowns (*u*, *p*)
- Initial condition only for flow:

$$p(\mathbf{0},\cdot)=p_0$$
 in Ω

• Boundary conditions:

Flow:
$$p = p_D$$
 on $(0, T) \times \Gamma_{Df}$ $\boldsymbol{q} \cdot \boldsymbol{n} = q_N$ on $(0, T) \times \Gamma_{Nf}$
Mechanics: $\boldsymbol{u} = \boldsymbol{u}_D$ on $(0, T) \times \Gamma_{Dm}$ $\boldsymbol{\sigma}' \boldsymbol{n} = \boldsymbol{t}_N$ on $(0, T) \times \Gamma_{Nm}$

Generalizations and departures from poroelasticity

• Dynamic elasticity...hyperbolic-parabolic system:

$$\underbrace{\rho \partial_{tt}^{2} \boldsymbol{u}}_{\text{inertial term}} + \underbrace{\lambda^{*} \nabla \partial_{t} \operatorname{div} \boldsymbol{u}}_{\text{secondary consolidation term}} - \operatorname{div}(\boldsymbol{C} \boldsymbol{\varepsilon}(\boldsymbol{u})) + \alpha \nabla \boldsymbol{p} = \boldsymbol{f}$$

• Initial (reference) stress - important for nonlinear problems:

$$\boldsymbol{\sigma} = (\boldsymbol{\sigma}' - \boldsymbol{\sigma}_0) - \alpha \boldsymbol{\rho} \boldsymbol{I}$$

- Hydro-mechanical parameter coupling, e.g. $k = k(\mathbf{u}, \sigma)$
- Unsaturated flow
- Non-linear mechanics: plasticity, damage, fracture mechanics
- Thermo-poro-elasticity

• ...

Well-posedness

POROELASTICITY | WELL-POSEDNESS

A priori estimate

- For simplicity we assume homogeneous b.c.: p = 0, u = 0 on $(0, T) \times \partial \Omega$
- Differentiate elasticity equation w.r. to time, multiply by $\partial_t \boldsymbol{u}$, and integrate:

$$\int_{\Omega} \partial_t \boldsymbol{u} \partial_t (-\operatorname{div}(\boldsymbol{C}\boldsymbol{\varepsilon}(\boldsymbol{u})) + \alpha \nabla \boldsymbol{p}) =$$
$$= \int_{\Omega} \boldsymbol{C}\boldsymbol{\varepsilon}(\partial_t \boldsymbol{u}) : \boldsymbol{\varepsilon}(\partial_t \boldsymbol{u}) - \alpha \int_{\Omega} \partial_t \boldsymbol{p} \operatorname{div} \partial_t \boldsymbol{u} = \int_{\Omega} \partial_t \boldsymbol{u} \cdot \partial_t \boldsymbol{f}$$

• Multiply storage (flow) equation by $\partial_t p$ and integrate:

$$\int_{\Omega} \partial_t p(\partial_t (Sp + \alpha \operatorname{div} \boldsymbol{u}) - \operatorname{div}(k\nabla p)) =$$
$$= S \int_{\Omega} |\partial_t p|^2 + \alpha \int_{\Omega} \partial_t p \operatorname{div} \partial_t \boldsymbol{u} + k \int_{\Omega} \partial_t \nabla p \cdot \nabla p = \int_{\Omega} b \partial_t p$$

• Sum both equations...

POROELASTICITY | WELL-POSEDNESS

A priori estimate

• Sum of both equations:

$$\int_{\Omega} \boldsymbol{C} \boldsymbol{\varepsilon}(\partial_t \boldsymbol{u}) : \boldsymbol{\varepsilon}(\partial_t \boldsymbol{u}) + \boldsymbol{S} \int_{\Omega} |\partial_t \boldsymbol{p}|^2 + \frac{k}{2} \frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} |\nabla \boldsymbol{p}|^2 = \int_{\Omega} \partial_t \boldsymbol{u} \cdot \partial_t \boldsymbol{f} + \int_{\Omega} \boldsymbol{b} \partial_t \boldsymbol{p}$$

• Integrate w.r. to time:

$$\int_{0}^{\tau} \int_{\Omega} \boldsymbol{C} \boldsymbol{\varepsilon}(\partial_{t} \boldsymbol{u}) : \boldsymbol{\varepsilon}(\partial_{t} \boldsymbol{u}) + \boldsymbol{S} \int_{0}^{\tau} \int_{\Omega} |\partial_{t} \boldsymbol{p}|^{2} + \frac{k}{2} \int_{\Omega} |\nabla \boldsymbol{p}|^{2}(\tau)$$
$$= \int_{0}^{\tau} \int_{\Omega} (\partial_{t} \boldsymbol{u} \cdot \partial_{t} \boldsymbol{f} + b \partial_{t} \boldsymbol{p}) + \frac{k}{2} \int_{\Omega} |\nabla \boldsymbol{p}_{0}|^{2}$$

• If $\mathbf{C}\varepsilon : \varepsilon \ge 2G|\varepsilon|^2$, S, k > 0 then there is a constant C = C(G, S, k) > 0:

$$\int_{0}^{T} \left(\|\nabla \partial_{t} \boldsymbol{u}\|_{2}^{2} + \|\partial_{t} \boldsymbol{p}\|_{2}^{2} \right) + \sup_{\tau \in (0,T)} \|\nabla \boldsymbol{p}\|_{2}^{2}(\tau) \leq C \int_{0}^{T} \left(\|\partial_{t} \boldsymbol{f}\|_{2}^{2} + \|\boldsymbol{b}\|_{2}^{2} \right) + \|\nabla \boldsymbol{p}_{0}\|_{2}^{2}$$

Weak solution

Weak formulation of Biot problem (B)

Find $\boldsymbol{u} \in H^1(0, T; \boldsymbol{H}^1_0(\Omega)), \boldsymbol{p} \in L^{\infty}(0, T; \boldsymbol{H}^1_0(\Omega)) \cap H^1(0, T; L^2(\Omega))$ s.t.

- $p(0, \cdot) = p_0 \text{ in } \Omega;$
- $\forall \boldsymbol{v} \in \boldsymbol{H}_0^1(\Omega)$ and a.e. $t \in (0, T)$:

$$\int_{\Omega} \left[\boldsymbol{C} \boldsymbol{\varepsilon}(\boldsymbol{u}(t)) : \boldsymbol{\varepsilon}(\boldsymbol{v}) - \alpha \boldsymbol{p}(t) \operatorname{div} \boldsymbol{v} \right] = \int_{\Omega} \boldsymbol{f}(t) \cdot \boldsymbol{v};$$

• $\forall q \in H_0^1(\Omega)$ and a.e. $t \in (0, T)$:

$$\int_{\Omega} \left[\partial_t \left(Sp(t) + \alpha \operatorname{div} \boldsymbol{u}(t) \right) q + k \nabla p(t) \cdot \nabla q \right] = \int_{\Omega} b(t) q.$$

Existence of weak solutions

Assumptions:

- $\forall \epsilon : \ \boldsymbol{C} \epsilon : \epsilon \geqslant 2G|\epsilon|^2 + (K \frac{2}{3}G)|\operatorname{tr} \epsilon|^2$
- *S*, *k* > 0
- $p_0 \in H^1_0(\Omega)$, $f \in H^1(0, T; L^2(\Omega))$, $b \in L^2(0, T; L^2(\Omega))$

Theorem

Under the above assumptions, problem (B) has a unique solution.

References:

- A. Ženíšek (1984): weak solutions, S = 0
- R. E. Schowalter (2000): strong and weak solutions, quasistatic/dynamic case

Approximation

POROELASTICITY | APPROXIMATION

Approximation of two-field formulation of Biot system I

Two-field (primal) formulation (*u*, *p*):

$$-\operatorname{div}(\boldsymbol{C}\boldsymbol{\varepsilon}(\boldsymbol{u})) + \alpha \nabla \boldsymbol{p} = \boldsymbol{f}$$
$$\partial_t \left(\boldsymbol{S}\boldsymbol{p} + \alpha \operatorname{div} \boldsymbol{u} \right) - \operatorname{div}(k \nabla \boldsymbol{p}) = \boldsymbol{b}$$

Temporal semidiscretization (e.g. implicit Euler's method with equidistant timestepping, $\Delta t = T/N$, $t_i = i\Delta t$, i = 1, ..., N):

 $(\mathbf{C}\varepsilon(\mathbf{u}(t_i)), \varepsilon(\mathbf{v})) - (\alpha p(t_i), \operatorname{div} \mathbf{v}) = (\mathbf{f}(t_i), \mathbf{v})$ $(\alpha \operatorname{div} \mathbf{u}(t_i), q) + (\mathbf{S}p(t_i), q) + \Delta t(k \nabla p(t_i), \nabla q) = (\Delta t b(t_i) + \mathbf{S}p(t_{i-1}) + \alpha \operatorname{div} \mathbf{u}(t_{i-1}), q)$

In operator form:

$$\begin{bmatrix} \mathcal{A} & -\mathcal{B}^{\top} \\ \mathcal{B} & \mathcal{C} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}(t_i) \\ \boldsymbol{\rho}(t_i) \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}_i \\ \boldsymbol{b}_i \end{bmatrix}$$

Approximation of two-field formulation of Biot system II

- Skew-symmetric saddle-point structure;
- For small *S* and $\Delta t k$, $\mathfrak{C} \approx 0$... Biot \approx Stokes:

$$\begin{bmatrix} \mathcal{A} & -\mathcal{B}^{\top} \\ \mathcal{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{u}(t_i) \\ p(t_i) \end{bmatrix} = \begin{bmatrix} \mathbf{f}_i \\ \mathbf{b}_i \end{bmatrix}$$

Finite element discretization:

- for sufficiently large S, arbitrary P^k/P^l finite elements work (k, l = 1, 2, ...);
- for small S, spurious pressure oscillations can appear ⇒ use Stokes-stable pair (e.g. Taylor-Hood P^{k+1}/P^k or MINI element)

Approximation of two-field formulation of Biot system III

- in geosciences, usually lowest order approximations are used
- stress and flux are computed using solution gradient ⇒ worse FE approximation
- remedy: mixed/dual formulations

Approximation of three-field formulation of Biot system I

Three-field (primal-dual) formulation (u, p, q):

• additional unknown **q** given by Darcy's law

 $-\operatorname{div}(\boldsymbol{C}\boldsymbol{\varepsilon}(\boldsymbol{u})) + \alpha \nabla \boldsymbol{p} = \boldsymbol{f}$ $\partial_t \left(\boldsymbol{S}\boldsymbol{p} + \alpha \operatorname{div} \boldsymbol{u} \right) + \operatorname{div} \boldsymbol{q} = \boldsymbol{b}$ $k^{-1}\boldsymbol{q} + \nabla \boldsymbol{p} = \boldsymbol{0}$

Operator form of time-semidiscretized problem:

$$\begin{bmatrix} \mathcal{A} & -\mathcal{B}^{\top} & \mathbf{0} \\ \mathcal{B} & \mathbf{C} & \mathcal{D} \\ \mathbf{0} & -\mathcal{D}^{\top} & \mathcal{E} \end{bmatrix} \begin{bmatrix} \boldsymbol{u}(t_i) \\ \boldsymbol{p}(t_i) \\ \boldsymbol{q}(t_i) \end{bmatrix} = \begin{bmatrix} \boldsymbol{f}_i \\ \boldsymbol{b}_i \\ \mathbf{0} \end{bmatrix}$$

two-fold skew-symmetric saddle-point structure

Approximation of three-field formulation of Biot system II

FE/FV discretization:

- stable pressure-flux pair: e.g. P^k/RT^k, P^k/BDM^{k+1}, k = 0, 1, ..., or finite volume methods P⁰/TPFA, P⁰/MPFA
- stable displacement-pressure pair: for lowest order pressure space, P²/P⁰ works in 2D, in 3D more delicate issue

Approximation of three-field formulation of Biot system III

Two-point / multi-point flux approximation FV schemes

Approximation of five-field formulation of Biot system I

Five-field (dual-dual) formulation (σ, r, u, p, q) :

- additional unknown σ given by Hooke's law
- symmetry of σ enforced weakly...Lagrange multiplier r

$$-\operatorname{div} \boldsymbol{\sigma} = \boldsymbol{f}$$
$$\partial_t \left(\boldsymbol{S} \boldsymbol{p} + \alpha \operatorname{tr} (\boldsymbol{C}^{-1} (\boldsymbol{\sigma} + \alpha \boldsymbol{p} \boldsymbol{l})) \right) + \operatorname{div} \boldsymbol{q} = \boldsymbol{b}$$
$$k^{-1} \boldsymbol{q} + \nabla \boldsymbol{p} = \boldsymbol{0}$$
$$\boldsymbol{C}^{-1} (\boldsymbol{\sigma} + \alpha \boldsymbol{p} \boldsymbol{l}) - \nabla \boldsymbol{u} + \operatorname{as}^* \boldsymbol{r} = \boldsymbol{0}$$
$$\operatorname{as} \boldsymbol{\sigma} = \boldsymbol{0}$$

Approximation of five-field formulation of Biot system II

Operator form of time-semidiscretized problem:

$$\begin{bmatrix} \mathcal{A} & \mathcal{B}^{\top} & \mathcal{C}^{\top} & \mathcal{D}^{\top} & \mathbf{0} \\ -\mathcal{B} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -\mathcal{C} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathcal{D} & \mathbf{0} & \mathbf{0} & \mathcal{E} & \mathcal{F}^{\top} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathcal{F} & \mathcal{G} \end{bmatrix} \begin{bmatrix} \boldsymbol{\sigma}(t_i) \\ \boldsymbol{r}(t_i) \\ \boldsymbol{\mu}(t_i) \\ \boldsymbol{p}(t_i) \\ \boldsymbol{q}(t_i) \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \boldsymbol{f}_i \\ \boldsymbol{b}_i \\ \mathbf{0} \end{bmatrix}$$

block-symmetric saddle-point problem

FE/FV discretization:

- stable mixed elasticity spaces: e.g. $\sigma \in BDM^1$, $\boldsymbol{u} \in P^0$, $\boldsymbol{r} \in P^0$ or MPSA/ P^0/P^0
- other variables similar as in previous case

Simple problems I

Terzaghi's 1D problem

- confined soil sample placed in container with liquid
- bottom side impermeable, top fully drained and subjected to constant vertical stress
- due to symmetry the problem can be solved in 1D
- analytical solution by Terzaghi (1923) in the form of infinite series

- applied stress induces sudden increase of pressure in the sample
- after consolidation, the pressure drops to the external level
- due to low permeability, consolidation takes certain time

Simple problems II

The 1D Biot problem can be reduced to a scalar parabolic equation

$$\partial_t p = c_v \partial_{xx}^2 p, \qquad c_v = rac{k}{S + rac{lpha^2}{K + rac{4}{3}G}}$$

The quantity $c_v t/h^2$ indicates whether the system is consolidated or not. In this problem, for

$$\frac{c_v t}{h^2} > 2$$

the pressure is almost constant.

Simple problems III

Mandel's problem

- rectangular sample subjected to constant vertical stress
- lateral sides drained, top and bottom impermeable
- semi-analytical solution by Mandel (1963) in the form of infinite series, depending on roots of a nonlinear equation
- after consolidation period, pressure drops to exterior pressure
- due to low permeability and sudden pressure drop on lateral sides, pressure temporarily increases inside the domain (Mandel-Cryer effect)

2a

Simple problems IV

Mandel's problem: analytical solution

Mandel's problem: FEM solution

Left: Analytical solution of pressure, right: comparison of FEM solutions.

Iterative splitting

POROELASTICITY | ITERATIVE SPLITTING

Iterative splittings

- Biot problem is fully coupled
- Monolithic solution is unconditionally stable, but large problems need suitable preconditioners
- Splitting of mechanics and flow can be advantageous but requires careful design

Iterative splittings of skew-symmetric problems I

The discretized two- and three-field formulation of Biot system has skew-symmetric saddle-point structure:

$$\begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

Block Gauss-Seidel method (BGS):

$$\begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\top} \\ \mathbf{0} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^{i+1} \\ \mathbf{x}_2^{i+1} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^i \\ \mathbf{x}_2^i \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

It can be shown that BGS converges only if $\mathbf{C} \succ \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top} \Rightarrow$ conditional convergence.

Iterative splittings of skew-symmetric problems II

This gives the **fixed-strain splitting**:

(1) Given u^i , find p^{i+1} :

$$\partial_t (Sp^{i+1} + \alpha \operatorname{div} \boldsymbol{u}^i) - \operatorname{div}(k \nabla p^{i+1}) = b$$

2 Given p^{i+1} , find u^{i+1} :

$$-\operatorname{div}(\boldsymbol{C}\varepsilon(\boldsymbol{u}^{i+1})) + \alpha \nabla \boldsymbol{p}^{i+1} = \boldsymbol{f}$$

Theorem (Conditional convergence of fixed-strain splitting)

The fixed-strain splitting method is convergenct under the condition

$$S > \frac{\alpha^2}{K}$$

POROELASTICITY | ITERATIVE SPLITTING

Iterative splittings of skew-symmetric problems III

Proof:

• differences
$$(\delta_p^{i+1}, \delta_u^i) := (p^{i+1} - p^i, u^i - u^{i-1})$$
 satisfy:

$$\partial_t \left(S \delta_p^{i+1} + \alpha \operatorname{div} \delta_{\boldsymbol{u}}^i \right) - \operatorname{div}(k \nabla \delta p^{i+1}) = 0$$
$$-\operatorname{div}(\boldsymbol{C} \boldsymbol{\varepsilon}(\delta_{\boldsymbol{u}}^i)) + \alpha \nabla \delta p^i = \mathbf{0}$$

• multiply by $\partial_t \, \delta_p^{i+1}$ / differentiate and multiply by $\partial_t \, \delta_{\boldsymbol{u}}^i$ and integrate:

$$S \left\| \partial_{t} \delta_{p}^{i+1} \right\|_{2}^{2} + \kappa \frac{\mathrm{d}}{\mathrm{d}t} \left\| \nabla \delta_{p}^{i+1} \right\|_{2}^{2} + \kappa \left\| \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i} \right\|_{2}^{2} + \underbrace{\alpha(\partial_{t} \delta_{p}^{i+1}, \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i})}_{\leqslant \frac{\alpha^{2}}{2\kappa} \left\| \partial_{t} \delta_{p}^{i+1} \right\|_{2}^{2} + \frac{\kappa}{2} \left\| \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i} \right\|_{2}^{2}} \leqslant \underbrace{\alpha(\partial_{t} \delta_{p}^{i}, \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i})}_{\leqslant \frac{\alpha^{2}}{2\kappa} \left\| \partial_{t} \delta_{p}^{i} \right\|_{2}^{2} + \frac{\kappa}{2} \left\| \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i} \right\|_{2}^{2}} \leq \underbrace{\alpha(\partial_{t} \delta_{p}^{i}, \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i})}_{\leqslant \frac{\alpha^{2}}{2\kappa} \left\| \partial_{t} \delta_{p}^{i} \right\|_{2}^{2} + \frac{\kappa}{2} \left\| \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i} \right\|_{2}^{2}}$$

Iterative splittings of skew-symmetric problems IV

• result:

$$\left(S - \frac{\alpha^2}{2K}\right) \left\| \partial_t \, \delta_p^{i+1} \right\|_2^2 + k \frac{\mathrm{d}}{\mathrm{d}t} \left\| \nabla \delta_p^{i+1} \right\|_2^2 \leqslant \frac{\alpha^2}{2K} \left\| \partial_t \, \delta_p^i \right\|_2^2$$

• convergence if

$$S - rac{lpha^2}{2K} > rac{lpha^2}{2K} \qquad \Leftrightarrow \qquad S > rac{lpha^2}{K}$$

Iterative splittings of skew-symmetric problems V

Stabilized BGS: Schur complement approach

$$\begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 - \mathbf{x}_1^i \\ \mathbf{x}_2 - \mathbf{x}_2^i \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^i \\ \mathbf{x}_2^i \end{bmatrix}$$

Block LU factorization gives ($\mathbf{S} = \mathbf{B}\mathbf{A}^{-1}\mathbf{B}^{\top}$):

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{B}\mathbf{A}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\top} \\ \mathbf{0} & \mathbf{C} + \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 - \mathbf{x}_1^i \\ \mathbf{x}_2 - \mathbf{x}_2^i \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^i \\ \mathbf{x}_2^i \end{bmatrix}$$

This leads to an iterative scheme with approximate Schur complement \tilde{S} :

$$\begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{B}\mathbf{A}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\top} \\ \mathbf{0} & \mathbf{C} + \widetilde{\mathbf{S}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1}^{i+1} - \mathbf{x}_{1}^{i} \\ \mathbf{x}_{2}^{i+1} - \mathbf{x}_{2}^{i} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_{1} \\ \mathbf{f}_{2} \end{bmatrix} - \begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1}^{i} \\ \mathbf{x}_{2}^{i} \end{bmatrix}$$

Iterative splittings of skew-symmetric problems VI

Applying the inverse of the first matrix we get:

$$\begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\mathsf{T}} \\ \mathbf{0} & \mathbf{C} + \widetilde{\mathbf{S}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^{i+1} - \mathbf{x}_1^i \\ \mathbf{x}_2^{i+1} - \mathbf{x}_2^i \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{A} & -\mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^i \\ \mathbf{x}_2^i \end{bmatrix}$$

This can be rewritten as a stabilized BGS:

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \widetilde{\mathbf{S}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^{i+1} - \mathbf{x}_1^i \\ \mathbf{x}_2^{i+1} - \mathbf{x}_2^i \end{bmatrix} + \begin{bmatrix} \mathbf{A} & -\mathbf{B}^\top \\ \mathbf{0} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^{i+1} \\ \mathbf{x}_2^{i+1} \end{bmatrix} + \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{B} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^i \\ \mathbf{x}_2^i \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

or alternatively as a preconditioned Richardson method:

$$\begin{bmatrix} \mathbf{x}_1^{i+1} \\ \mathbf{x}_2^{i+1} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^i \\ \mathbf{x}_2^i \end{bmatrix} + \begin{bmatrix} \mathbf{A} & -\mathbf{B}^\top \\ \mathbf{0} & \mathbf{C} + \widetilde{\mathbf{S}} \end{bmatrix}^{-1} \left(\begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{A} & -\mathbf{B}^\top \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1^i \\ \mathbf{x}_2^i \end{bmatrix} \right)$$

Iterative splittings of skew-symmetric problems VII

Application on two-field Biot system:

- Approximate Schur complement: scaled L^2 -product $\beta(p, q)$
- Result: Fixed-stress splitting
 - **1** Given $(\boldsymbol{u}^i, \boldsymbol{p}^i)$, find \boldsymbol{p}^{i+1} :

$$\beta \partial_t (\boldsymbol{p}^{i+1} - \boldsymbol{p}^i) + \partial_t (\boldsymbol{S} \boldsymbol{p}^{i+1} + \alpha \operatorname{div} \boldsymbol{u}^i) - \operatorname{div}(\boldsymbol{k} \nabla \boldsymbol{p}^{i+1}) = \boldsymbol{b}$$

$$-\operatorname{div}(\boldsymbol{C}\boldsymbol{\epsilon}(\boldsymbol{u}^{i+1})) + \alpha \nabla \boldsymbol{p}^{i+1} = \boldsymbol{f}$$

Theorem (Unconditional convergence of fixed-stress splitting)

The fixed-stress splitting method is convergent if $\beta \ge \frac{1}{2} \frac{\alpha^2}{K}$. Fastest convergence is obtained for $\beta = \frac{1}{2} \frac{\alpha^2}{K}$.

Iterative splittings of skew-symmetric problems VIII

Proof:

• differences $(\delta_{p}^{i+1}, \delta_{u}^{i})$ satisfy:

$$(\mathbf{S} + \beta)\partial_t \,\delta_p^{i+1} - \operatorname{div}(k\nabla\delta p^{i+1}) + \alpha \operatorname{div}\partial_t \,\delta_{\boldsymbol{u}}^i = \beta \partial_t \,\delta_p^i$$
$$-\operatorname{div}(\mathbf{C}\varepsilon(\delta_{\boldsymbol{u}}^i)) + \alpha\nabla\delta p^i = \mathbf{0}$$

• multiply by $\partial_t \, \delta_p^{i+1}$ / differentiate and multiply by $\partial_t \, \delta_{\boldsymbol{u}}^i$ and integrate:

$$(S + \beta) \left\| \partial_{t} \delta_{p}^{i+1} \right\|_{2}^{2} + k \frac{\mathrm{d}}{\mathrm{d}t} \left\| \nabla \delta_{p}^{i+1} \right\|_{2}^{2} + K \left\| \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i} \right\|_{2}^{2} + \alpha (\partial_{t} \delta_{p}^{i+1}, \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i}) \leq (\partial_{t} \delta_{p}^{i}, \underbrace{\beta \partial_{t} \delta_{p}^{i+1} + \alpha \operatorname{div} \partial_{t} \delta_{\boldsymbol{u}}^{i}}_{=:\sigma} \leq \frac{\beta}{2} \left\| \partial_{t} \delta_{p}^{i} \right\|_{2}^{2} + \frac{1}{2\beta} \left\| \sigma \right\|_{2}^{2}$$

Iterative splittings of skew-symmetric problems IX

• polarization identity:

$$\alpha(\partial_t \, \delta_p^{i+1}, \operatorname{div} \partial_t \, \delta_{\boldsymbol{u}}^i) = \frac{1}{2\beta} \, \|\sigma\|_2^2 - \frac{\beta}{2} \left\|\partial_t \, \delta_p^{i+1}\right\|_2^2 - \frac{\alpha^2}{2\beta} \left\|\operatorname{div} \partial_t \, \delta_{\boldsymbol{u}}^i\right\|_2^2$$

result:

$$\left(S + \frac{\beta}{2}\right) \left\|\partial_t \,\delta_p^{i+1}\right\|_2^2 + k \frac{\mathrm{d}}{\mathrm{d}t} \left\|\nabla \delta_p^{i+1}\right\|_2^2 + \frac{1}{2\beta} \left\|\sigma\right\|_2^2 + \left(K - \frac{\alpha^2}{2\beta}\right) \left\|\operatorname{div} \partial_t \,\delta_u^i\right\|_2^2 \\ \leq \frac{\beta}{2} \left\|\partial_t \,\delta_p^i\right\|_2^2 + \frac{1}{2\beta} \left\|\sigma\right\|_2^2$$

convergence if

$$K - rac{lpha^2}{2eta} \geqslant 0 \qquad \Leftrightarrow \qquad \beta \geqslant rac{lpha^2}{2K}$$

Iterative splittings of skew-symmetric problems X

One can also switch the order of elasticity and flow

- Approximate Schur complement: scaled divergence $\gamma \operatorname{div}(\boldsymbol{u}^{i+1} \boldsymbol{u}^i)$
- Resulting scheme: undrained splitting

() Given $(\boldsymbol{u}^i, \boldsymbol{p}^i)$, find \boldsymbol{u}^{i+1} :

$$-\operatorname{div}(\boldsymbol{\gamma}\operatorname{div}(\boldsymbol{u}^{i+1}-\boldsymbol{u}^{i})\boldsymbol{I}+\boldsymbol{C}\varepsilon(\boldsymbol{u}^{i+1}))+\alpha\nabla\boldsymbol{p}^{i}=\boldsymbol{f}$$

2 Given u^{i+1} , find p^{i+1} :

$$\partial_t (Sp^{i+1} + \alpha \operatorname{div} \boldsymbol{u}^{i+1}) - \operatorname{div}(k \nabla p^{i+1}) = b$$

Theorem (Unconditional convergence of undrained splitting)

The undrained splitting method is convergent for $\gamma \ge \frac{\alpha^2}{2S}$.

POROELASTICITY | ITERATIVE SPLITTING

Iterative splittings of skew-symmetric problems XI

Remarks:

- Stable schemes: fixed-stress and undrained split
- Fixed-stress split generally has faster convergence
- Undrained split adds constraints on discretization of elasticity to avoid spurious oscillations
- References: Mikelić and Wheeler (2013), White et al. (2016), Both et al. (2017)

Iterative splitting of symmetric problems I

The discretized five-field formulation of Biot system has symmetric saddle-point structure:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^{\mathsf{T}} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

Since the matrix is blockwise s.p.d., the BGS is equivalent to alternating minimization

$$\mathbf{x}_1^i \to \mathbf{x}_2^i := \operatorname*{argmin}_{\mathbf{y}} J(\mathbf{x}_1^i, \mathbf{y}), \qquad \mathbf{x}_2^i \to \mathbf{x}_1^{i+1} := \operatorname*{argmin}_{\mathbf{y}} J(\mathbf{y}, \mathbf{x}_2^i)$$

of the quadratic functional

$$J(\boldsymbol{x}_1, \boldsymbol{x}_2) = \begin{pmatrix} 1 \\ 2 \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B}^\top \\ \boldsymbol{B} & \boldsymbol{C} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix} - \begin{bmatrix} \boldsymbol{f}_1 \\ \boldsymbol{f}_2 \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \end{bmatrix}$$

This method is unconditionally stable.

POROELASTICITY | ITERATIVE SPLITTING

Iterative splitting of symmetric problems II

Resulting scheme: fixed-stress splitting

(1) Given σ^i , find (p^{i+1}, q^{i+1}) :

$$\partial_t \left(Sp^{i+1} + \alpha \operatorname{tr}(\mathbf{C}^{-1}(\mathbf{\sigma}^i + \alpha p^{i+1}\mathbf{I})) \right) + \operatorname{div} \mathbf{q}^{i+1} = b$$
$$k^{-1}\mathbf{q}^{i+1} + \nabla p^{i+1} = \mathbf{0}$$

2 Given
$$p^{i+1}$$
, find $(\sigma^{i+1}, r^{i+1}, u^{i+1})$:
 $-\operatorname{div} \sigma^{i+1} = f$
 $C^{-1}(\sigma^{i+1} + \alpha p^{i+1}I) - \nabla u^{i+1} + \operatorname{as}^* r^{i+1} = 0$
 $\operatorname{as} \sigma^{i+1} = 0$

Theorem

The fixed-stress splitting method for five-field formulation is convergent.

POROELASTICITY | ITERATIVE SPLITTING

Convergence of iterative schemes: example

Mandel's problem, implicit Euler, P2/P1 FEM

Mandel's problem: Convergence of fixed-strain splitting

Conditional convergence of fixed-strain splitting.

Mandel's problem: Convergence of fixed-stress/undrained splitting

Convergence of fixed-stress splitting and undrained splitting.

Applications in rock hydro-mechanics

POROELASTICITY | APPLICATIONS IN ROCK HYDRO-MECHANICS

Modelling heterogeneities in rock hydro-mechanics I

Two types of rock heterogeneity:

- local variations in bulk properties
- macroscopic fractures and fault zones with narrow width but large size

Modelling heterogeneities in rock hydro-mechanics II

Modelling approaches:

- equivalent continuum
- discrete fracture network (DFN)
- discrete fracture-matrix (DFM)

Discrete fracture-matrix models

- fields $(\boldsymbol{u}, \boldsymbol{p}, ...)$ in $\Omega_m \cup \Omega_f \longrightarrow$ fields $(\boldsymbol{u}_m, \boldsymbol{p}_m, ...)$ in Ω_m and $(\boldsymbol{u}_f, \boldsymbol{p}_f, ...)$ in γ
- semi-discrete operators:

$$\widetilde{\nabla} p = \nabla_t p_f + \nabla_v p, \quad \nabla_v p = \frac{1}{2} \left(\Delta^+ p v^+ + \Delta^- p v^- \right), \quad \Delta^\pm p = \frac{2}{\delta} \left(p_m^\pm - p_f \right)$$

$$\widetilde{\operatorname{div}} \boldsymbol{u} = \operatorname{div}_t \boldsymbol{u}_f + \operatorname{div}_{\boldsymbol{\nu}} \boldsymbol{u}, \qquad \operatorname{div}_{\boldsymbol{\nu}} \boldsymbol{u} = \frac{1}{2} \Big(\Delta^+ \boldsymbol{u} \cdot \boldsymbol{\nu}^+ + \Delta^- \boldsymbol{u} \cdot \boldsymbol{\nu}^- \Big)$$

DFM model of poroelasticity

1 Biot equations in rock matrix Ω_m :

$$-\operatorname{div} \boldsymbol{\sigma}_m + \alpha \nabla \boldsymbol{p}_m = \boldsymbol{f}_m, \quad \boldsymbol{\sigma}_m = \boldsymbol{C} \boldsymbol{\varepsilon}(\boldsymbol{u}_m)$$
$$\boldsymbol{\partial}_t \left(\boldsymbol{S} \boldsymbol{p}_m + \alpha \operatorname{div} \boldsymbol{u}_m \right) + \operatorname{div} \boldsymbol{q}_m = \boldsymbol{b}_m, \quad \boldsymbol{q}_m = k \nabla \boldsymbol{p}_m$$

2 Biot equations in fracture γ :

$$\begin{aligned} &-\widetilde{\operatorname{div}}\,\boldsymbol{\sigma} + \alpha \widetilde{\nabla} \boldsymbol{p} = \boldsymbol{f}_{f}, \quad \boldsymbol{\sigma}_{f} = \frac{1}{2}\boldsymbol{C}(\widetilde{\nabla}\boldsymbol{u} + \widetilde{\nabla}\boldsymbol{u}^{\top}) \\ &\boldsymbol{\partial}_{t}\left(\boldsymbol{S}\boldsymbol{p}_{f} + \alpha \widetilde{\operatorname{div}}\,\boldsymbol{u}\right) + \widetilde{\operatorname{div}}\,\boldsymbol{q} = \boldsymbol{b}_{f}, \quad \boldsymbol{q}_{f} = k \widetilde{\nabla} \boldsymbol{p} \end{aligned}$$

Ontinuity of flux and tangential traction on fracture-matrix interface:

$$\boldsymbol{q}_m^{\pm} \cdot \boldsymbol{\nu}^{\pm} = \boldsymbol{q}_f^{\pm} \cdot \boldsymbol{\nu}^{\pm} \qquad (\boldsymbol{\sigma}_m^{\pm} \boldsymbol{\nu}^{\pm})_t = (\boldsymbol{\sigma}_f^{\pm} \boldsymbol{\nu}^{\pm})_t$$

Onstraints on minimal fracture aperture:

$$\delta + (\boldsymbol{u}_m^+ \cdot \boldsymbol{\nu}^+ + \boldsymbol{u}_m^- \cdot \boldsymbol{\nu}^-) \geqslant \delta_{\textit{min}} \qquad (\Delta^+ \boldsymbol{\sigma} + \Delta^- \boldsymbol{\sigma}) \boldsymbol{\nu} \cdot \boldsymbol{\nu} \geqslant \boldsymbol{0}$$

Discretization of DFM model I

• Generalization to immersed fractures, crossings and branching:

$$\sum_{i} \sigma_{f}^{i} \mathbf{n}^{i} = \mathbf{0}$$

 $\sum_{i} \mathbf{q}_{f}^{i} \cdot \mathbf{n}^{i} = 0$

- Compatible discretization of domain and fracture
- FE spaces: P1/MH

displacement
$$P_1$$

pressure P_0
flux RT_0
pressure trace P_0 on edges

Discretization of DFM model II

• algebraic form of fixed-stress splitting scheme:

$$\begin{split} \min_{\boldsymbol{u}_{i}^{m}} \left(\frac{1}{2} \boldsymbol{A} \boldsymbol{u}_{i}^{m} - \boldsymbol{f}^{m} - \boldsymbol{B}^{\top} \boldsymbol{u}_{i}^{f} \right) \cdot \boldsymbol{u}_{i}^{m}, \quad \boldsymbol{E} \boldsymbol{u}_{i}^{m} \leqslant \boldsymbol{c} \\ (\boldsymbol{C} + \boldsymbol{\beta} \widetilde{\boldsymbol{S}}) \boldsymbol{u}_{i+1}^{f} = \boldsymbol{f}^{f} + \boldsymbol{\beta} \widetilde{\boldsymbol{S}} \boldsymbol{u}_{i}^{f} - \boldsymbol{B} \boldsymbol{u}_{i}^{m} \end{split}$$

- contact problems solved using quadratic programming (PERMON)
- implementation: Flow123d

Joint work with J. Kružík, D. Horák

Nonlinear fracture couplings

Contact with shear dilation

 $\delta_{\textit{min}} = \delta_{\textit{min}}(\textbf{\textit{u}}) ... \text{ bounded, Lipschitz continuous}$ Solution by successive approximations:

$$\mathcal{P}: \delta_{\min} \mapsto \boldsymbol{u}; \qquad \boldsymbol{u}^{n+1} := \mathcal{P}(\delta_{\min}(\boldsymbol{u}^n))$$

Cubic law for fracture permeability

$$k_f = \frac{(\delta + \boldsymbol{u}^+ \cdot \boldsymbol{v}^+ + \boldsymbol{u}^- \cdot \boldsymbol{v}^-)^2}{12\mu}$$

Application: Homogenization of conductivity in EDZ I

Multiscale model of excavation damage zone

Computation of equivalent hydraulic conductivity of a local DFM model:

- series of computations with prescribed pressure gradient
- least squares fitting of conductivity tensor from averaged velocity and given pressure gradient
- influence of stress/deformation

Joint work with J. Březina, M. Špetlík

Application: Homogenization of conductivity in EDZ II

POROELASTICITY | APPLICATIONS IN ROCK HYDRO-MECHANICS

Application: Geothermal system I

- Thermo-hydraulic model of geothermal heat exchanger
- Hydro-mechanical model to describe stimulation (opening) of preexisting fractures
- Fractures with high permeability and low stiffness
- Simulation of power during 30 years of operation
- Comparison for
 - no stimulation
 - stimulation by nonlinear HM model with fracture contact and cubic law

Joint work with J. Březina, P. Exner

rock: granite depth: 5 km distance of wells: 200 m open part of wells: 100 m computational domain: cube 600 m \setminus cylinders $\emptyset = 10 m$ around wells

Application: Geothermal system II

Fractures:

initial cross-section: 1 mm initial conductivity: $k_f/k_m = 10^5$ Young modulus: $E_f/E_m = 10^{-9}$

- HM model of hydraulic stimulation injection pressure: 10 MPa initial cross-section: 1 mm
- 7H model of heat production injection pressure: 1 MPa bottom temperature: 150°C input water temperature: 15°C

Cross-section of stimulated fractures

Power (with and without stimulation)

Application: Geothermal system III

Piezometric head and velocity streamlines

Temperature after 30 years

Conclusion

Biot system of poroelasticity

- equivalent formulations using primal/dual variables
- FEM/FVM approximations and their stability
- iterative splittings and their stability
- DFM models for fractured rocks
- real-world applications

FACULTY OF MECHATRONICS, INFORMATICS AND INTERDISCIPLINARY STUDIES <u>TUL</u>

Thank you for attention!

Jan Stebel Technical University of Liberec, Czech Republic

jan.stebel@tul.cz

References: Modelling of poroelasticity I

M.A. Biot. General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164, 1941.

E. Detournay and A.H.-D. Cheng. Fundamentals of poroelasticity, Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method, C. Fairhurst (editor), Pergamon Press, 113-171, 1993.

F. Gassmann. Über die Elastizität poröser Medien, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96, 1-23, 1951.

K. Terzaghi. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamische Spannungserscheinungen, Sitzber. Akad. Wiss. Wien, Abt. IIa, 132, 125-138, 1923.

References: Modelling of poroelasticity II

K. Terzaghi. Erdbaumechanik auf bodenphysikalischer Grundlage, Deuticke, Wien, 1925.

A. Verruijt. Theory and problems of poroelasticity, 2016. On-line resource, accessible at https://geo.verruijt.net/software/PoroElasticity2016b.pdf.

References: Well-posedness

R. E. Schowalter. Diffusion in poro-elastic media. Journal of Mathematical Analysis and Applications, 251(1):310–340, 2000.

A. Ženíšek. The existence and uniqueness theorem in Biot's consolidation theory. Aplikace Matematiky, 29(3):194–211, 1984.

References: Iterative splittings

J. W. Both, M. Borregales, J. M. Nordbotten, K. Kumar, F. A. Radu. Robust fixed stress splitting for Biot's equations in heterogeneous media. Applied Mathematics Letters 68:101–108, 2017.

A. Mikelić and M. F. Wheeler. Convergence of iterative coupling for coupled flow and geomechanics. Computational Geosciences 17:455–461, 2013.

J. A. White, N. Castelletto, H. A. Tchelepi. Block-partitioned solvers for coupled poromechanics: A unified framework. Comput. Methods Appl. Mech. Engrg. 303:55–74, 2016.