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Outline of presentation
0 Mathematical modelling of poroelasticity
@ Well-posedness
@ Approximation
@ Iterative splitting

@ Applications in rock hydro-mechanics
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Mathematical modelling
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What is poroelasticity |

poroelasticity = porous media flow + elasticity

PRESSURE g STRESS

FLUID MOTION DEFORMATION
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What is poroelasticity Il

Examples of deformable porous media
* soils, rocks

¢ biological tissues
¢ building materials
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Overview of literature

K. Terzaghi (1923, 1925)

M. A. Biot (1941)

F. Gassmann (1951)

E. Detournay and A. H.-D. Cheng (1993)

A. Verruijt (2016) K. Terzaghi
(1883-1963)

M. A. Biot
(1905-1985)
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macroscopically homogeneous material
2 components: solid skeleton + fluid filled pores

—~
linearly elastic solid skeleton 5>O
interconnected pores S

P 05
porosity:
o Vv



L] Ll

Drained deformation:

Undrained deformation: fluid can flow infout

fluid |s.entra|c.3ped In the domain stress is carried only by solid
stress is carried by

. . particles and skeleton
compression of fluid

compression of solid particles consolidation takes time due to low
rearrangement of solid skeleton permeability



hydraulically isolated sample
applied stress Ac = Ap +(Ac—Ap)
~ Y——

pore pressure effective stress

volume change of porous medium:
AV
~ = —CsAp  —Cp(Ac—Ap)
—_— Y—
deformation due deformation (rearrange-

to pore pressure ment of particles) at con-
stant pore pressure

— _4CiAp —(1—$)Cs (Ap+“‘Ap>
———

T—¢

deformation of fluid
deformation of solid particles

Ao ) |
P
Ao
compressibilities:
Cf-ﬂUid

Cs - solid particles
Cm - porous medium

Ao



Skempton pore pressure coefficient:

5. Ap _ Crm — Cs
" Ao (Cm—Cs)+ d(Cr—Cs)

<1  ifC;Cs>0

Decomposition of total stress tensor into effective stress and pore pressure:
o=o0"—apl, «=Biot-Willis coefficient

Sign convention: compresive stress negative
For isotropic media:

A\Y—s—CmAG’—Cm(AG—i—ocAp) = oc:’l—&



Assumption: Time scale of mechanics <« time scale of porous media flow
Equilibrium equations for total stress:

~dive = —dive’ +avp = f|

Hooke’s law:

Isotropic media:

K...bulk modulus
G...shear modulus



Conservation of mass:

Ot (dpf) +div(ppev) =0 0t ((1—P)ps) + div((1—d)psw) =0
Density of fluid and solid:

pr(P) = proexp(Cep)  ps(p, ) = pso exp (ﬁi,, (dp — G))
Conservation of mass for porous medium:
divw +div(p(v —w)) + ¢(Cs — Cs)otp — Cs0t 0 =0
q:=o(v—w) (specific discharge)

o0:=0 —oap=divu/Cmn— ap (isotropic stress)
S:=¢Cs+ (a— d)Cs (storativity)



Conservation of mass of porous medium (storage equation):

o3¢ divu+ Sdrp = —divq|

Darcy’s law:

K p
q=—-V(p— prge ) =—kV ( - e)
U8 S~ prg

hydrostatic
pressure piezometric head

..permeability (generally tensor)

..fluid viscosity

..elevation

..hydraulic conductivity (generally tensor)
..gravitational acceleration

QxX0®F 7



Assuming prg = 1, the poroelasticity equations read:

—div(Ce(u)) + aVp = f

0t (Sp + adivu) — div(kVp) = b} in(0,T)xQ

Coupled linear elliptic-parabolic system with unknowns (u, p)
Initial condition - only for flow:

p(0,-) = po in Q
Boundary conditions:

Flow: p=ppon (0, T)xTpr q-n=qgnon (0, T)x Ins
Mechanics: u=upon (0, T)xTpy o'n=tyon (0, T)x\m



Dynamic elasticity...hyperbolic-parabolic system:

pdZu + A'Vdrdivu —div(Ce(u)) +aVp=F
—— ~——

inertial term secondary consolidation term

Initial (reference) stress - important for nonlinear problems:
o= (0'—og)—apl

Hydro-mechanical parameter coupling, e.g. k = k(u, o)
Unsaturated flow

Non-linear mechanics: plasticity, damage, fracture mechanics
Thermo-poro-elasticity



Well-posedness
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For simplicity we assume homogeneous b.c..p=0, u=0 on (0, T) x 0Q
Differentiate elasticity equation w.r. to time, multiply by 9: u, and integrate:

J 9: Ud; (— div(Ce(U) + aVp) —
Q

_ JQ Ce(du): s(atu)—aJ

atpdivatu:J atU‘atf
Q (o]

Multiply storage (flow) equation by 9; p and integrate:
J 0t p(0¢ (Sp + aodivu) — div(kVp)) =
Q

:SJ |atp|2+o<J atpdivatu+kJ ath-Vp:J bo:p
Q Q Q Q

Sum both equations...



Sum of both equations:

k d
J Ce(atu):a(atu)—FSJ |atp|2+J |Vp|2:J atu-atf+J bd:p
1o} 1) 2dt o) o)

Integrate w.r. to time:

| |, et o +SJ; | opp+3 [ wpi

0

N k
= |, | @0t boep) 5 | 1vpol
0JO

If Ce: e > 2G|e|?, S, k > 0 then there is a constant C = C(G, S, k) > 0:

T T
j (Ivacul + acpl3)+ sup va%m@jo (Il FI3 + 1b13) + 117 Poll3

te(0,



Biot system

Weak solution

Weak formulation of Biot problem (B)

Findu e H'(0, T; Hg)(Q)), pelL>0,T, Hg)(Q)) NH'(0, T;L%2(Q)) s.t.
° p(0,)) =poinQ;
° Vv eH)(Q)anda.e.te (0, T):

J [Ce(u(t)) : e(v) — ap(t) divV] =J f(t) v,
Q Q

° Vg e Hi(Q)and a.e. t € (0, T):

jﬂ [0¢ (Sp(t) + acdivu(t))g + kVp(t) - Vg =j b(t)q.

Q
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Biot system
Existence of weak solutions
Assumptions:
* Ve: Ce:e > 20[el2 + (K — 56)[tref
* S k>0
® Po € Hg)(Q), fcH(O,T; L2(Q)), beL?(0,T;L2(Q))

Under the above assumptions, problem (B) has a unique solution.

References:
o A. Zeni$ek (1984): weak solutions, S = 0

* R. E. Schowalter (2000): strong and weak solutions, quasistatic/dynamic
case
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Approximation
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Approximation of two-field formulation of Biot system |

Two-field (primal) formulation (u, p):

—div(Ce(u)) + «Vp =f
0t (Sp + adivu) — div(kVp) = b

Temporal semidiscretization (e.g. implicit Euler's method with equidistant
timestepping, At =T/N, t; =iAt,i=1,...,N):

(Ce(u(ty)), e(v)) — (ep(ty), div v) = (F(t;), v)
(ecdivu(ty), q) + (Sp(t;), q) + At(kVp(t;), V) = (Atb(t;) + Sp(ti—1) + ecdivu(ti_1), q)

In operator form:
u(t;)

[ﬂ —BT
p(t;)

B €
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Skew-symmetric saddle-point structure;
For small S and Atk, € = O... Biot ~ Stokes:

[‘A —B Tu(ty)

B0 | |p(t)

Finite element discretization:
for sufficiently large S, arbitrary P¥/P! finite elements work (k,/ =1,2,...);

for small S, spurious pressure oscillations can appear = use Stokes-stable
pair (e.g. Taylor-Hood P+1/Pk or MINI element)



Approximation of two-field formulation of Biot system llI

VANVANFONJN

MINI

* in geosciences, usually lowest order approximations are used

* stress and flux are computed using solution gradient
= worse FE approximation

* remedy: mixed/dual formulations

POROELASTICITY | APPROXIMATION
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Approximation of three-field formulation of Biot system |

Three-field (primal-dual) formulation (u, p, q):
¢ additional unknown q given by Darcy’s law

—div(Ce(u)) + aVp =F
3¢ (Sp + adivu) +divg = b

k'q+Vp=0
Operator form of time-semidiscretized problem:
A =BT 0 u(t) f,'
B € Dl |plt)| = |bi
0 —D" & |q(t) 0

* two-fold skew-symmetric saddle-point structure
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Approximation of three-field formulation of Biot system Il

FE/FV discretization:
* stable pressure-flux pair: e.g. PK/RTK, PK/BDM*+1, k = 0,1, ..., or finite
volume methods P%/TPFA, P°/MPFA

* stable displacement-pressure pair: for lowest order pressure space, P2/P°
works in 2D, in 3D more delicate issue
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Approximation of three-field formulation of Biot system Il

Pra

U,
—_—

o Pz

Two-point / multi-point flux approximation FV schemes
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—

s * Py
Uy

Pae —* *Fs

FPr® P
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Five-field (dual-dual) formulation (o, r,u,p, q):
additional unknown o given by Hooke’s law
symmetry of o enforced weakly...Lagrange multiplier r

—dive=f
3¢ (Sp + «tr(C (o + aph)) + divg = b
k'q+Vp=0

C ' o+apl)—Vu+as*r=0

aso=0



Operator form of time-semidiscretized problem:

A BT €T MO [oft) 0
-3 0 0 0 O r(t;) 0
—C 0 0 0 0 U(t,') = f,'
D 0 0 e gt p(t,) b,'
0O 0 0 - § q(t) 0

block-symmetric saddle-point problem

FE/FV discretization:
stable mixed elasticity spaces: e.g. ¢ € BDM', u € P°, r € P° or MPSA/P°/P°
other variables similar as in previous case



Terzaghi's 1D problem
confined soil sample placed in container with l l

liquid
bottom side impermeable, top fully drained and T T T
subjected to constant vertical stress

due to symmetry the problem can be solved in
1D

analytical solution by Terzaghi (1923) in the
form of infinite series

applied stress induces sudden increase of pressure in the sample
after consolidation, the pressure drops to the external level
due to low permeability, consolidation takes certain time



The 1D Biot problem can be reduced to a scalar
parabolic equation

k
0tp =CydmP,  Cv=

-
S+ K+3G

The quantity c,t/h? indicates whether the
system is consolidated or not. In this problem,
for

cyt
he > 2
the pressure is almost constant.

Terzaghi's problem

-- th?=1
~- ath?=2

- Cut/h?=0.001
cyt/h?=0.01
-- at/h?=0.1

\

|
—
04 06

0.8 1.0
p/po



Mandel’s problem

rectangular sample subjected to constant vertical
stress

lateral sides drained, top and bottom impermeable
semi-analytical solution by Mandel (1963) in the
form of infinite series, depending on roots of a
nonlinear equation

after consolidation period, pressure drops to
exterior pressure

due to low permeability and sudden pressure drop
on lateral sides, pressure temporarily increases
inside the domain (Mandel-Cryer effect)

-+ - — —>
- - — —>

}
v

2a



Simple problems IV

Mandel's problem: analytical solution Mandel's problem: FEM solution

,
]
19 151 ptenstBpnas oo a N i
TINTTE RS e R LA ) i
v VTAA’_\ 1"
1.25 Folagsih i
0.8 O,
CTRAL
Vive A
B FARH
g 061 < "
[]

= = |
a S 0.75 ! E
\
0.4 . |
——- cyt/a?=0 Tl \\ AN \ 0.5 4 :

-~ \
- ta?=0.01 SO N E
4 oy N,
021 _. car=0.1 RN 0.25 1 !
S AY
=== tfa’=0.5 \~:‘~‘\“\ —=- PLPL |
04 —=- cutfa’=1 TN 0] === P2/P1 |
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 06 0.8 1.0
x/a x/a

Left: Analytical solution of pressure, right: comparison of FEM solutions.
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Iterative splitting
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Biot problem is fully coupled

Monolithic solution is unconditionally stable, but large problems need
suitable preconditioners

Splitting of mechanics and flow can be advantageous but requires careful
design

flow

mechanics




The discretized two- and three-field formulation of Biot system has
skew-symmetric saddle-point structure:

A —BT X1 f1
B C X9 o f2
Block Gauss-Seidel method (BGS):
A —BT] [ [0 0] [x] _[f
0 cC | xS B 0] |x) f,

It can be shown that BGS converges only if C = BA~'BT = conditional
convergence.



Iterative splittings of skew-symmetric problems Il

This gives the fixed-strain splitting:
@ Given U/, find p'™:

0t (SP™1 + acdivu) — div(kvpty = b
@ Given p'*1, find u™t:

—div(Ce(u ) + avp*T = f

Theorem (Conditional convergence of fixed-strain splitting)

The fixed-strain splitting method is convergenct under the condition

o2
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Iterative splittings of skew-symmetric problems Il

Proof:
* differences (55, 8},) == (p'*! — p, u' — u'~") satisfy:

3¢ (S8 + audiv &) — div(kVep™T) = 0
—div(Ce(5},)) + aVp' = 0

* multiply by 0t 6;',“ / differentiate and multiply by 9; &, and integrate:

. 2 .
s[ocs! H k|| Vo5 + K |ivar s,

il
+ a(at6i+1,divat6L) < a8}, divr 5y,)

. in2
“—KHata'“H LK divorsy|? < Selorshlo+5ldivar sl

POROELASTICITY | ITERATIVE SPLITTING
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Iterative splittings of skew-symmetric problems IV

* result:
(5=5%) ot + e [oes s < 5 [
e convergence if , , ,
S— ;_K > ;—K & S> %
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Stabilized BGS: Schur complement approach
A -B"|[x1—x|] _[f] [A -BT
B C xz—x’ “|f,| |B C
Block LU factorization gives (S = BA 'BT):
I 0l[A —B"][xi—xj] _[fi] [A —BT][X
BA™' 1||0 C+S||x;—x,| |f] |[B C x’
This leads to an iterative scheme with approximate Schur complement S:

I O xiF—xt]  [f A —B'] [x
BA' | xp—x,| ~ |f2] |[B € x’

i
X3

A -B'
0 C+S




Applying the inverse of the first matrix we get:

_[f] [A —-BT][X
“|f2] B C | [x]
This can be rewritten as a stabilized BGS:
00 LA BT [T [0 0] ] _ [f
0 cC | [x}’ B 0] | f,

0 S
or alternatively as a preconditioned Richardson method:

X+ Xi - f A -B'
)=l (- 2

A -B'

- {X%H X’
0 C+S

xi2+1 xl

XI1+1 _ X’
x12+1 _ xI

A -B'
0 C+S

xl
XI




Iterative splittings of skew-symmetric problems VII

Application on two-field Biot system:

» Approximate Schur complement: scaled L2-product B(p, q)
* Result: Fixed-stress splitting
@ Given (U, p'), find p'*1:
RO (P! —p) + 8¢ (SP™T + cdivu) — div(kVpt) = b
@ Given p'*', find u'*: _ _
—div(Ce(u™") + aVp ™ =F

Theorem (Unconditional convergence of fixed-stress splitting)

The fixed-stress splitting method is convergent if § > %“72 Fastest convergence
is obtained for p = J K
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Iterative splittings of skew-symmetric problems VIii
Proof:
* differences (5, 8},) satisfy:

(S+ B)ar 8" — div(kVop'™) + adiv 9 8}, = Bt 5},

—div(Ce(5},)) + aVp' = 0
* multiply by 0t 6;',“ / differentiate and multiply by 9; &, and integrate:
2 d 2 12
i+1 el i+1 . i
(S+B) Hatép H2 ke Hvsp )2 +K Hdlv 0:8%|

+ (0 85, div 0r 8L,) < (3¢ 8, B 51 + xdiv 9t 8L)

Vv
=0

<§Hat6;;Hz+21ﬁllc||§
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Iterative splittings of skew-symmetric problems IX

* polarization identity:

. . 1
oc(atzs;,“,divatsz)=%||o\|§ BHa 5'+1H . dlvaté’

* result:

(48 Jocss |+ ksy w5+ 5 I+ (k= 55 ) [avarsi
< g [ocsp] + 5 1ot

e convergence if

POROELASTICITY | ITERATIVE SPLITTING 44/68



Iterative splittings of skew-symmetric problems X

One can also switch the order of elasticity and flow

» Approximate Schur complement: scaled divergence vy div(u™' — u')
* Resulting scheme: undrained splitting
@ Given (U, p'), find u":

—div(ydiv(u™" —u)l + Ce(u™t)) + aVp' = F
@ Given u'', find p™:

0t (SP™1 + aedivu ) —div(kvpt) = b

Theorem (Unconditional convergence of undrained splitting)

The undrained splitting method is convergent fory > g‘—;
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Remarks:
Stable schemes: fixed-stress and undrained split
Fixed-stress split generally has faster convergence

Undrained split adds constraints on discretization of elasticity to avoid
spurious oscillations

References: Mikeli¢ and Wheeler (2013), White et al. (2016), Both et al.
(2017)



The discretized five-field formulation of Biot system has symmetric saddle-point

structure:
A B'][x] [F
B C| X B f,
Since the matrix is blockwise s.p.d., the BGS is equivalent to alternating
minimization
X’% — Xi2 = arg}r,nin J(Xil,y), Xi2 — XQH = arg]r/’nin J(y,xiz)
of the quadratic functional
(1A B"] [x fi
o= (35 el el - [e))

This method is unconditionally stable.

X1
X2




Iterative splitting of symmetric problems Il

Resulting scheme: fixed-stress splitting
@ Given ¢, find (p*1, g’ "):

0t (SP 1 + atr(C (o) + ap™ 1)) + divg't = b
k—1qi+1 + Vpi+1 -0

® Given p'*', find (o', Ft1 Ui t1):

—dive'tT =f
c o+ o —vut fast it =0
asa =0

The fixed-stress splitting method for five-field formulation is convergent.
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Convergence of iterative schemes: example
Mandel’s problem, implicit Euler, P2/P1 FEM

Mandel's problem: Convergence of fixed-strain splitting Mandel's problem: Convergence of fixed-stress/undrained splitting

100 200 —— fixed-stress split

—— undrained split

80

2
3

No. of iterations
No. of iterations

s
8

50
20
25

2 4 S/(;:G 8 10 2 4 j/’;: 6 8 10
Conditional convergence of Convergence of fixed-stress
fixed-strain splitting. splitting and undrained splitting.
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Applications in rock hydro-mechanics
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Modelling heterogeneities in rock hydro-mechanics |

Two types of rock heterogeneity:

* local variations in bulk
properties

* macroscopic fractures and
fault zones with narrow
width but large size

51/68



Modelling heterogeneities in rock hydro-mechanics Il

Modelling approaches:

* equivalent continuum

o discrete fracture network
(DFN)

o discrete fracture-matrix
(DFM)

equivalent continuum
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- v
v vt
Q|0 2 I S
v | |t

fields (u,p,...) in Qn U Qf — fields (Um, pm, ...) iIN Qm and (Ug, py, ...) iny
semi-discrete operators:

Vp = Vips +Vyp, Vyp = %(A*pﬁ +aTpvT), Atp= g(rﬁ ~p)

—~ 1
divu = div¢ Us + divy U, divy, U = E(A*u-v*JrA*u-v*)



Biot equations in rock matrix Qp:
—dIVO'm+(vam :fm, Om :Cﬁ(Um)
0t (Spm + adivum) +divqg,, = bm, 4, =KVpm

Biot equations in fracture y:
—divo + aVp = fr, of= %C(%u +vu')
dt (Spf + och/u> +divg=bs, qf=kVp
Continuity of flux and tangential traction on fracture-matrix interface:
G- Vi =d; -vE (opvi)e=(oF v
Constraints on minimal fracture aperture:

S+ (Uf - v +u, - v7) = dmin (Atfo+Ao)v-v>0



Generalization to immersed fractures, crossings and branching:
S oin =0
i
a0
i

Compatible discretization of domain and fracture
FE spaces: P1/MH

displacement P,

pressure Pq

flux RT,
pressure trace Pg on edges




Discretization of DFM model ll

* algebraic form of fixed-stress splitting scheme:

1
min <§Au§" —f" — BTu}‘> -u", Eul"<c
ur

(C+pS)ul,, =F +pSul —Bu"
» contact problems solved using quadratic programming (PERMON)
* implementation: Flow123d

A9 A Flow 123¢

Joint work with J. Kruzik, D. Horak
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Contact with shear dilation

N A

[}

dmin = dmin(U)... bounded, Lipschitz continuous
Solution by successive approximations:
P Smin— U, U= P(8min(U"))
Cubic law for fracture permeability

(S+ut-vF+u-v)?

Kr = 121




Application: Homogenization of conductivity in EDZ |

Multiscale model of excavation damage zone

" Mechanika mikro EDZ

Transport EDZ
Transport geobariérou (1D) Mechanika makro EDZ

(L= k(x) alz)
I ! i &=

Computation of equivalent hydraulic conductivity of a local DFM model:
* series of computations with prescribed pressure gradient

¢ least squares fitting of conductivity tensor from averaged velocity and given
pressure gradient

e influence of stress/deformation
Joint work with J. Bfezina, M. Spetlik
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Application: Homogenization of conductivity in EDZ Il

1MPa

.00034 A

-05

i
ol @ 00015

g

1 .00033

©

2
-05

[}

conducwny difference cunducmrw dmdwncﬁ conductivity_difference
57am -3.50+03 0 1.6e+03
00033
-05
.00013
.2e-05
0 o00s e
00033
B compression [Pa] 2MPa
0e+00 5e+05 le+06 2e+06
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Thermo-hydraulic model of geothermal heat
exchanger

Hydro-mechanical model to describe
stimulation (opening) of preexisting fractures
Fractures with high permeability and low
stiffness

Simulation of power during 30 years of
operation

Comparison for

no stimulation
stimulation by nonlinear HM model with fracture
contact and cubic law

Joint work with J. Bfezina, P. Exner

Rinding

rock: granite

depth: 5km

distance of wells: 200 m

open part of wells: 100 m
computational domain: cube 600 m \
cylinders g =10 m around wells



Application: Geothermal system Il

e Fractures:
initial cross-section: 1Tmm
initial conductivity: k¢/km = 10°
Young modulus: E¢/Ep =109

@ HM model of hydraulic stimulation
injection pressure: 10 MPa
initial cross-section: 1Tmm

@ TH model of heat production
injection pressure: 1 MPa
bottom temperature: 150°C
input water temperature: 15°C
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Cross-section of stimulated fractures

no stimulation

16 stimulation
14
12

1

0.6 !

0.4

5 10 15 20 25 30
time [years]

Power (with and without stimulation)

power [MW)
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Application: Geothermal system il

laseonz

— 400

temperature

— 350

[ 300
2.7e+02

Piezometric head and velocity streamlines

L

Temperature after 30 years
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Biot system of poroelasticity
equivalent formulations using primal/dual variables
FEM/FVM approximations and their stability
iterative splittings and their stability
DFM models for fractured rocks
real-world applications
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