Matrix decay phenomenon and its applications I

Stefano Pozza

Charles University, Prague

Seminar on Numerical Analysis
January 23-27, 2023

Outline

January 25, 9:00. Decay phenomenon and sparse matrices

- Introduction;
- Decay characterization and applications;
- Upper bounds for banded matrices;
- Extension to sparse matrices;
- Application to network analysis.

January 26, 9:00. Decay phenomenon and numerical applications

- Decay phenomenon and Krylov subspace methods;
- Applications to the (inexact) Arnoldi algorithm;
- Decay phenomenon and rational Krylov subspace methods;
- Decay phenomenon and linear ODEs.

Matrix decay phenomenon and its applications

Introduction

Sparse matrices

- Sparse matrix: small number of nonzero elements (the number of nonzero elements is $\mathcal{O}(n)$?);
- "A matrix is sparse if there is an advantage in exploiting its zeros" [Duff, Erisman, Reid, '86].

Banded matrix

Kronecker sum

Graph (Erdos971)

Localization and matrices

Sparsity does not take into account the elements' magnitude.

- There are dense matrices where only a small portion of its elements are non-negligible in magnitude;
- The elements with large magnitude are localized in a region of the matrix (e.g., diagonals);
- The magnitude usually tends to decay to zero as we move away from those regions;
- They are said to be localized, or that they exhibit decay.

Refer to: [Benzi, Localization in matrix computation, '16]

Localization and matrices

Sparsity does not take into account the elements' magnitude.

- There are dense matrices where only a small portion of its elements are non-negligible in magnitude;
- The elements with large magnitude are localized in a region of the matrix (e.g., diagonals);
- The magnitude usually tends to decay to zero as we move away from those regions;
- They are said to be localized, or that they exhibit decay.

Refer to: [Benzi, Localization in matrix computation, '16]

Matrix functions

- Matrix exponential:

$$
\exp (A)=\sum_{j=0}^{\infty} \frac{A^{j}}{j!}
$$

- Matrix resolvent:

$$
\begin{aligned}
r_{\alpha}(A) & =(I-\alpha A)^{-1}, & & (1 / \alpha \notin \sigma(A)), \\
& \stackrel{?}{=} \sum_{j=0}^{\infty} \alpha^{j} A^{j}, & & (1 / \alpha<\rho(A)) ;
\end{aligned}
$$

- Other functions: inverse A^{-1}, square root $A^{1 / 2}, \ldots$

Refer to: [Higham, Functions of Matrices, '08].

Matrix function definition

Matrix function

Let $A \in \mathbb{C}^{n \times n}$ and f be an analytic function on some open $\Omega \subset \mathbb{C}$. Then

$$
f(A)=\int_{\Gamma} f(z)(z I-A)^{-1} d z,
$$

with $\Gamma \subset \Omega$ a system of Jordan curves encircling each eigenvalue of A exactly once, with mathematical positive orientation.

When f is analytic other equivalent definitions exist ${ }^{1}$. Moreover,

$$
f(z)=\sum_{j=0}^{\infty} \alpha_{j} z^{j}, \quad f(A)=\sum_{j=0}^{\infty} \alpha_{j} A^{j}
$$

if both the series converge $(|z|<1, \rho(A)<1)$.
${ }^{1}$ [Higham, Functions of Matrices, '08]

Matrix decay phenomenon and its applications

Decay characterization and applications

Banded matrices and decay - Example

60×60 tridiagonal SPD matrix

Sparsity pattern of A

Banded matrices and decay - Function properties

Function properties influence the decay behavior (pole vs entire)

Banded matrices and decay - Band length

Banded matrices and decay - Spectral properties

[1.0027, 4.9973]

A^{-1}

$\exp (A)$
[0.0027, 3.9973]
[-0.9973, 2.9973]

$(A-2 I)^{-1}$

$\exp (A-2 I)$

An application: matrix exponential approximations

- A_{n} is a sequence of banded matrices of increasing size n;
- $f\left(A_{n}\right)$ displays an off-diagonal decay whose rate is independent of n.
We want to compute $\exp \left(A_{n}\right)$ by polynomial approximation:

$$
\exp \left(A_{n}\right) \approx p_{k}\left(A_{n}\right)
$$

For instance, p_{k} can be given in terms of Chebyshev polynomials $T_{k}(z)$. As the T_{k} are orthogonal polynomials, we get the recurrences

$$
T_{k+1}\left(A_{n}\right)=2 A_{n} T_{k}\left(A_{n}\right)-T_{k-1}\left(A_{n}\right), \quad k=1,2, \ldots
$$

An application: matrix exponential approximations

The most expensive operation in the recurrences:

$$
T_{k+1}=2 A_{n} T_{k}\left(A_{n}\right)-T_{k-1}\left(A_{n}\right), \quad k=1,2, \ldots
$$

- A_{n} is banded;
- $T_{k}\left(A_{n}\right)$ shows a decay. It can be approximated by a banded matrix $B_{n, k} \approx T_{k}\left(A_{n}\right)$;
- The bandwidth of $B_{n, k}$ is independent from n.

Therefore

$$
A_{n} T_{k}\left(A_{n}\right) \approx A_{n} B_{n, k},
$$

Note that the cost of performing $A_{n} B_{n, k}$ is $\mathcal{O}(n)$ as n increases.
For certain sequences of matrices A_{n}, it is possible to derive $\mathcal{O}(n)$ methods for matrix function approximation [Benzi, Razouk, '07].

Other applications

- Linear systems: $A x=b$, with A, b localized. Compute only the parts of x where the information is localized, e.g., by Gaussian elimination ([Duff, Erisman, Reid, '86]), Monte Carlo ([Benzi, Evans, Hamilton, Pasini, Slattery, '17]), quadrature ([Golub, Meurant, '10], [Bonchi, Esfandiar, Gleich, Greif, Lakshmanan, '12]), . . .
- Preconditioner construction: e.g., based on banded approximation of inverse ([Concus, Golub, Meurant, '85]), decay in the inverse triangular factors ([Benzi, Tuma, '00]), ...
- Eigenvalue problems: since spectral projectors can be expressed as matrix functions ([Razouk, '08], [Benzi, Rinelli, '22])
- Error bound for Krylov subspace approximations: Using the structure of the Arnoldi upper-Hessenberg matrix ([Ye, '13], [Wang, Ye, '16], [P., Simoncini, '19]), ...
- . . .

References (incomplete list...)

Early works on the decay property: [Demko, '77], [Demko, Moss, Smith, '84], [Eijkhout, Polman, '88], [Freund, '89], [Meurant, '92], [Benzi, Golub, '99] Surveys and theses: [Razouk, '08], [Benzi, '16], [Schimmel, '19], [Benzi, '20]
Matrix functions: [Iserles, '00], [Del Buono, Lopez, Peluso, '05], [Benzi, Razouk, '07], [Benzi, Boito, Razouk, '13], [Benzi, Boito, '14], [Schweitzer, '21], [Benzi, Rinelli, '22], [Boito, Eidelman, Gemignani, '22]

Applications to numerical methods: [Simoncini, Szyld, '03], [Simoncini '05], [Ye, '13], [Wang, '15], [Dinh, Sidje, '17], [Wang, Ye, '17], [Kürschner, Freitag, '20], [P., Simoncini, '19], [Frommer, Schimmel, Schweitzer, '21]

Sparse and structured matrices: [Mastronardi, Ng, Tyrtyshnikov, '10], [Canuto, Simoncini, Verani, '14], [Benzi, Simoncini, '15], [Frommer, Schimmel, Schweitzer, '18], [P., Tudisco, '18]

Matrix decay phenomenon and its applications

Upper bounds for banded matrices

Bandwidth 1 and Polynomials

A

A^{10}

A^{2}

A^{30}

A^{3}

Bandwidth 2 and Polynomials

Banded matrices

Notation

$\mathcal{B}_{n}(\beta, \gamma)$ is the set of banded matrices $A \in \mathbb{C}^{n \times n}$ with upper bandwidth $\beta \geq 0$ and lower bandwidth $\gamma \geq 0$, i.e.,

$$
(A)_{k, \ell}=0, \quad \text { for } \ell-k>\beta \text { or } k-\ell>\gamma
$$

If $A \in \mathcal{B}_{n}(\beta, \gamma)$ with $\beta, \gamma \neq 0$, for

$$
\xi:= \begin{cases}\lceil(\ell-k) / \beta\rceil, & \text { if } k<\ell \\ \lceil(k-\ell) / \gamma\rceil, & \text { if } k \geq \ell\end{cases}
$$

then

$$
\left(A^{m}\right)_{k, \ell}=0, \quad \text { for every } m<\xi
$$

Banded matrices and decay - Polynomial expansion

If it is possible to expand the matrix function into a series of polynomials

$$
f(A)=\sum_{j=0}^{\infty} \alpha_{j} p_{j}(A)
$$

then,

$$
f(A)_{k, \ell}=\sum_{j=\xi}^{\infty} \alpha_{j} p_{j}(A)_{k, \ell}
$$

Assuming $\left|\alpha_{j}\right| \longrightarrow 0$ quick enough, and $\left|p_{j}(A)_{k, \ell}\right|$ bounded, then $\left|f(A)_{k, \ell}\right|$ decays to zero as $|k-\ell|$ increases.

Banded matrices and decay - a-priori bounds

Using the previous observations, one can derive upper bounds in the form

$$
\left|(f(A))_{k, \ell}\right| \leq c \rho^{|k-\ell|}
$$

where $\rho \in(0,1), c>0$ depend on properties of A, f. In the non-symmetric case, the Field of Values

$$
W(A)=\left\{\boldsymbol{v}^{*} A \boldsymbol{v} \mid \boldsymbol{v} \in \mathbb{C}^{n},\|\boldsymbol{v}\|=1\right\}
$$

can provide the necessary spectral information.
We now show an a-priori bound for a function of a (non-Hermitian) matrix based on this approach; see [P. Simoncini, '19] (no use of the Crouzeix's conjecture), c.f. [Benzi, Boito, '14], [Benzi, '20].

The a-priori bound

Joint work with V. Simoncini (University of Bologna)
The bound takes the general form:

$$
\left|(f(A))_{k, \ell}\right| \leq p(\xi)\left(\frac{1}{\tau(\xi)}\right)^{\xi}
$$

where $p(\xi) \rightarrow p>0$, and $\tau(\xi)>1$ depends on f and $W(A)$.

Faber polynomials - Definition

Let Ω be a continuum with connected complement, ϕ is the relative conformal map satisfying the following conditions

$$
\phi(\infty)=\infty, \quad \lim _{z \rightarrow \infty} \frac{\phi(z)}{z}=d>0
$$

Faber polynomials - Definition

Consider the Laurent expansion of ϕ :

$$
\phi(z)=d z+a_{0}+\frac{a_{1}}{z}+\frac{a_{2}}{z^{2}}+\ldots
$$

Then, the nth power of ϕ can be expanded as

$$
(\phi(z))^{n}=d z^{n}+a_{n-1}^{(n)} z^{n-1}+\cdots+a_{0}^{(n)}+\frac{a_{-1}^{(n)}}{z}+\frac{a_{-2}^{(n)}}{z^{2}}+\ldots
$$

The Faber polynomial of degree n for the domain Ω is defined as

$$
\Phi_{n}(z)=d z^{n}+a_{n-1}^{(n)} z^{n-1}+\cdots+a_{0}^{(n)}, \quad \text { for } n \geq 0
$$

When $\Omega=[-1,1]$, they are the Chebyshev polynomials.
See [Suetin, '98].

Properties of Faber polynomials

- If f is analytic on Ω then

$$
f(z)=\sum_{j=0}^{\infty} f_{j} \Phi_{j}(z), \quad \text { for } z \in \Omega ;
$$

- If the spectrum of $A, \sigma(A)$, is contained in Ω, then

$$
f(A)=\sum_{j=0}^{\infty} f_{j} \Phi_{j}(A)
$$

- If Ω is convex and contains $W(A)$, then ([Beckermann, '05])

$$
\left\|\Phi_{j}(A)\right\| \leq 2
$$

Bound derivation - Idea

Assume $A \in \mathcal{B}(\beta, \gamma), \Phi_{j}$ define on the domain $\Omega \supset W(A)$, then

$$
f(A)_{k, \ell}=\sum_{j=0}^{\infty} f_{j} \Phi_{j}(A)_{k, \ell}=\sum_{j=\xi}^{\infty} f_{j} \Phi_{j}(A)_{k, \ell}
$$

with $\xi=\lceil(\ell-k) / \beta\rceil$ for $k<\ell, \xi=\lceil(k-\ell) / \gamma\rceil$ for $k>\ell$. Thus

$$
\begin{aligned}
\left|f(A)_{k, \ell}\right| & \leq \sum_{j=\xi}^{\infty}\left|f_{j}\right|\left|\Phi_{j}(A)_{k, \ell}\right| \leq \sum_{j=\xi}^{\infty}\left|f_{j}\right|\left\|\Phi_{j}(A)\right\| \\
& \leq 2 \sum_{j=\xi}^{\infty}\left|f_{j}\right|
\end{aligned}
$$

Approximating $\left|f_{j}\right|$, we obtain the bound (it depends on f, Ω, ξ).

The bound

Theorem

Let $A \in \mathcal{B}_{n}(\beta, \gamma)$ with $W(A) \subset \Omega$. Moreover, let ϕ be the conformal map of Ω, ψ be its inverse and G_{τ} the set with border $\Gamma_{\tau}=\{w:|\phi(w)|=\tau\}$. Assume that, for $\tau>1, f$ is analytic on G_{τ} and bounded on Γ_{τ}. Then

$$
\left|(f(A))_{k, \ell}\right| \leq 2 \frac{\tau}{\tau-1} \max _{z \in \Gamma_{\tau}}|f(z)|\left(\frac{1}{\tau}\right)^{\xi} .
$$

For the given f, Ω and ξ, τ must be chosen so to minimize

$$
\max _{z \in \Gamma_{\tau}}|f(z)|\left(\frac{1}{\tau}\right)^{\xi}
$$

Exponential function

Corollary

Let $A \in \mathcal{B}_{n}(\beta, \gamma)$ with $W(A) \subset \Omega$, with Ω 's boundary a horizontal ellipse with semi-axes $a \geq b>0$ and center $c=c_{1}+i c_{2} \in \mathbb{C}$, $c_{1}, c_{2} \in \mathbb{R}$. Then for $\xi>b$

$$
\left|\left(e^{A}\right)_{k, \ell}\right| \lesssim 2 e^{c_{1}}\left(e \frac{a+b}{2 \xi}\right)^{\xi}, \quad \xi>b
$$

A similar bound is derived in a different way in [Wang, Ye, '16].

Example - 127-th column of $\exp (A)$

$$
A=\operatorname{Toeplitz}(-i, \underline{i},-2) \in \mathbb{C}^{n \times n}, n=200
$$

Condition number of the eigenvector matrix: $4.0 e+29$

Example - 67-th column of $\exp (A)$

$$
A=\operatorname{Toeplitz}(i, 3 i,-i,-i) \in \mathbb{C}^{n \times n}, n=100
$$

Condition number of the eigenvector matrix $5.5 e+13$

$A^{-\frac{1}{2}}$

Since $z^{-\frac{1}{2}}$ is defined in $\mathbb{C}^{+}, \Gamma_{\tau}$ must be in \mathbb{C}^{+}.

Corollary

Let $A \in \mathcal{B}_{n}(\beta, \gamma)$ with $W(A) \subset \Omega \subset \mathbb{C}^{+}$. Ω^{\prime} s boundary is a horizontal ellipse with semi-axes $a \geq b>0$ and center $c \in \mathbb{C}$. Then, for any $\varepsilon \in \mathbb{R}$ with $0<\varepsilon \leq|c|-\sqrt{a(a+b)}$

$$
\left|\left(A^{-\frac{1}{2}}\right)_{k, \ell}\right| \lesssim \frac{2}{\sqrt{\varepsilon}} p_{2}(\varepsilon)\left(\frac{a+b}{|c|-\varepsilon} q_{2}(\varepsilon)\right)^{\xi}
$$

with

$$
\begin{gathered}
p_{2}(\varepsilon)=\frac{\left|c(1-\varepsilon /|c|)+\sqrt{c^{2}(1-\varepsilon /|c|)^{2}-\left(a^{2}-b^{2}\right)^{2}}\right|}{\left|c(1-\varepsilon /|c|)+\sqrt{c^{2}(1-\varepsilon /|c|)^{2}-\left(a^{2}-b^{2}\right)^{2}}\right|-(a+b)} . \\
q_{2}(\varepsilon)=\frac{1}{\mid 1+\sqrt{1-\left(a^{2}-b^{2}\right) /(c(1-\varepsilon /|c|))^{2}}}
\end{gathered}
$$

Example - 67-th column of $A^{-\frac{1}{2}}$

$$
A=\operatorname{Toeplitz}(i, \underline{7+3 i},-i,-i) \in \mathcal{B}_{100}(1,2), \varepsilon=0.05
$$

Condition number of the eigenvector matrix: $5.5 e+13$

Example - 67-th column of $A^{-\frac{1}{2}}$

$$
A=\operatorname{Toeplitz}(i, 3+3 i,-i,-i) \in \mathcal{B}_{100}(1,2), \varepsilon=0.05
$$

Condition number of the eigenvector matrix: $1.2 e+24$

Summarizing

- We presented a family of bounds for the decay of functions of banded matrices;
- The bounds depend on the shape of the matrix field of values and on the domain of analyticity of the function;
- The better we approximate the field of values, the better the bound.

More details: P., Simoncini, Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices, BIT (2019).

Matrix decay phenomenon and its applications

Extension to sparse matrices

Sparse matrices and decay: A graph interpretation

Any graph $G=(V, E)$ is represented by its adjacency matrix A. Vice versa, any matrix A represents a (weighted) graph.

$V=\{1,2, \ldots, 5\}, E=\{a, b, \ldots, g\}$

$$
\left(A^{m}\right)_{k, \ell}=0, \text { if } \operatorname{dist}(k, \ell)>m
$$

$\operatorname{dist}(k, \ell)$ is the geodesic distance from k to ℓ.

Graphs and Polynomials

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{lllll}
* & * & & & \\
& & * & & \\
& & & * & \\
& & & * & *
\end{array}\right]\left[\begin{array}{lllll}
* & * & * & & \\
* & & & * & \\
* & * & & * & * \\
& & & & * \\
& & & & \\
& & & &
\end{array}\right] \quad\left[\begin{array}{lllll}
* & * & * & * & \\
* & * & & * & * \\
* & * & * & * & * \\
& & & * & * \\
& & & &
\end{array}\right]
$$

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
& & & * & * \\
& & & &
\end{array}\right]
$$

A-priori bound for sparse matrices

For banded matrices we, generally, have bounds of the form:

$$
\left|(f(A))_{k, \ell}\right| \lesssim c\left(\frac{1}{\tau}\right)^{\xi}
$$

Using $\left(A^{m}\right)_{k, \ell}=0$, if $\operatorname{dist}(k, \ell)>m$, they can be extended to the sparse case as follows:

$$
\left|(f(A))_{k, \ell}\right| \lesssim c\left(\frac{1}{\tau}\right)^{\operatorname{dist}(k, \ell)}
$$

[Benzi, Razouk, '07]

Decay phenomenon and graphs: An example

Matrix decay phenomenon and its applications

Application to network analysis

Counting walks in graphs

A walk from k to ℓ is a path from the node k to the node ℓ that admits repeated edges (it is said to be closed when $k=\ell$).
$\left(A^{n}\right)_{k, \ell}=$ number of walks of length n from k to ℓ.

$1 \longrightarrow 4:$

- length 3: b, c, e
- length 4: a, b, c, e
- length 6: b, c, d, b, c, e
- length 7: b, c, d, b, c, e, g
- ...

Matrix powers and walks

1
2
3
4
5 $\left[\begin{array}{lllll}1 & 1 & & & \\ & & 1 & & \\ 1 & & & 1 & \\ & & & 1 & 1 \\ & & & & \end{array}\right]$
A
$\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & & \\ 1 & 1 & \\ & & \\ & & A^{2}\end{array}\right.$
A^{2}

$\left[\begin{array}{lllll}2 & 1 & 1 & 1 & \\ 1 & 1 & & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ & & & 1 & 1\end{array}\right]$
A^{3}
1
2
3
4 $\left[\begin{array}{lllll}3 & 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 2 & 1 \\ & & & 1 & 1 \\ & & & & \\ & & \end{array}\right]$

Tridiagonal matrix

$$
\left.\left[\begin{array}{ccccc}
1 & 1 & & & \\
1 & 1 & 1 & & \\
& 1 & 1 & 1 & \\
& & 1 & 1 & 1 \\
& & & 1 & 1
\end{array}\right] \quad\left[\begin{array}{ccccc}
2 & 2 & 1 & & \\
2 & 3 & 2 & 1 & \\
1 & 2 & 3 & 2 & 1 \\
& 1 & 2 & 3 & 2 \\
& & 1 & 2 & 2
\end{array}\right] \quad\left[\begin{array}{ccccc}
4 & 5 & 3 & 1 & \\
5 & 7 & 6 & 3 & 1 \\
3 & 6 & 7 & 6 & 3 \\
1 & 3 & 6 & 7 & 5 \\
& & & A^{2} & 3
\end{array}\right) 5 c h\right]
$$

$$
\left[\begin{array}{ccccc}
9 & 12 & 9 & 4 & ? \\
12 & 18 & 16 & 10 & 4 \\
9 & 16 & 19 & 16 & 9 \\
4 & 10 & 16 & 18 & 12 \\
? & 4 & 9 & 12 & 9
\end{array}\right]
$$

Tridiagonal matrix

$$
\left[\begin{array}{lllll}
1 & 1 & & & \\
1 & 1 & 1 & & \\
& 1 & 1 & 1 & \\
& & 1 & 1 & 1 \\
& & & 1 & 1
\end{array}\right] \quad\left[\begin{array}{ccccc}
2 & 2 & 1 & & \\
2 & 3 & 2 & 1 & \\
1 & 2 & 3 & 2 & 1 \\
& 1 & 2 & 3 & 2 \\
& & 1 & 2 & 2
\end{array}\right] \quad\left[\begin{array}{ccccc}
4 & 5 & 3 & 1 & \\
5 & 7 & 6 & 3 & 1 \\
3 & 6 & 7 & 6 & 3 \\
1 & 3 & 6 & 7 & 5 \\
& 1 & 3 & 5 & 4
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
9 & 12 & 9 & 4 & 1 \\
12 & 18 & 16 & 10 & 4 \\
9 & 16 & 19 & 16 & 9 \\
4 & 10 & 16 & 18 & 12 \\
1 & 4 & 9 & 12 & 9
\end{array}\right]
$$

Subgraph centrality: counting closed walks

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
3 & 2 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 2 & 1 \\
& & & 1 & 1
\end{array}\right]} \\
& A^{4}
\end{aligned}
$$

Subgraph centrality: counting closed walks

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
{\left[\begin{array}{llll}
1 & 1 & & \\
& & 1 & \\
1 & & & 1 \\
& & & 1
\end{array}\right.} & 1 \\
& & A & &
\end{array}\right]+\left[\begin{array}{cccc}
\boxed{1} & 1 & 1 & \\
1 & & & 1 \\
1 & 1 & & 1 \\
& & 1 \\
& & & 1
\end{array}\right]+\left[\begin{array}{ccccc}
\\
& & A^{2} & &
\end{array}\right]+\left[\begin{array}{ccccc}
\hline 2 & 1 & 1 & 1 & \\
1 & 1 & & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
& & & 1 & 1 \\
& & A^{3} & &
\end{array}\right]} \\
& +\left[\begin{array}{lllll}
\boxed{3} & 2 & 1 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 2 & 1 \\
& & & 1 & 1
\end{array}\right] \\
& S C(1)=1+1+2+3+\ldots \\
& \text { Divergent! }
\end{aligned}
$$

Subgraph centrality: counting closed walks

$$
\begin{aligned}
& \alpha_{1}\left[\begin{array}{ccccc}
\begin{array}{|cccc}
1 & 1 & & \\
1 & & 1 & \\
1 & & & 1 \\
& & & 1
\end{array} & 1 \\
& A & &
\end{array}\right]+\alpha_{2}\left[\begin{array}{ccccc}
\boxed{1} & 1 & 1 & & \\
1 & & & 1 & \\
1 & 1 & & 1 & 1 \\
& & & 1 & 1
\end{array}\right]+\alpha_{3}\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
2 & 1 & 1 & 1 \\
1 & 1 & & 1
\end{array}\right.} & 1 \\
1 & 1 & 1 & 1 & 1 \\
& & & 1 & 1 \\
& & A^{3} & &
\end{array}\right]+\ldots \\
& S C(1)=\alpha_{0}+\alpha_{1}+\alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+\ldots \\
& =\alpha_{0}+\alpha_{1} A_{1,1}+\alpha_{2}\left(A^{2}\right)_{1,1}+\alpha_{3}\left(A^{3}\right)_{1,1}+\alpha_{4}\left(A^{4}\right)_{1,1}+\ldots \\
& =\left(\sum_{j=0}^{\infty} \alpha_{j} A^{j}\right)_{1,1}=f(A)_{1,1}
\end{aligned}
$$

It is a matrix function when the series converges.
[Estrada, Rodriguez-Velazquez, '05]

Exponential and resolvent indexes

Usually, the following functions are considered:

$$
\exp (A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}, \quad r_{\alpha}(A)=\sum_{n=0}^{\infty} \alpha^{n} A^{n}=(I-\alpha A)^{-1} .
$$

Subgraph centrality references (incomplete list)

[Arrigo, Higham, Noferini, Wood, '22]
[Arrigo, Durastante, '21]
[Benzi, Boito, '20]
[Arrigo, Higham, '17]
[Aprahamian, Higham, Higham, '16] [Benzi, Klymko, '13]
[Benzi, Estrada, Klymko, '13]
[Estrada, Hatano, Benzi, '12]
[Estrada, '12]
[Estrada, Higham, '10]
[Estrada, Hatano, '08]
[Newman, Barabasi, Watts, '06]
[Estrada, Rodríguez-Velázquez, '05]

Application: Stability under sparse perturbation

Joint work with F. Tudisco (GSSI Gran Sasso Science Institute).
Consider $G=(V, E)$ with adjacency matrix A. Let us add, remove or simply modify the edges in the set δE, obtaining

$$
\widetilde{G}=(V, \widetilde{E})
$$

with $\widetilde{E} \subset E \cup \delta E$ and with adjacency matrix $\widetilde{A}=A+\delta A$.
We have derived bounds for

$$
\left|f(A)_{k, \ell}-f(A+\delta A)_{k, \ell}\right|
$$

which enlighten the dependency on the distance that separates either k or ℓ from the nodes touched by the edges in δE.

Motivations

- Computing the entries of $f(A)$ is a costly operation.
- Often only the first most important nodes are needed.
- Typically modifying a few marginal edges does not change the ranking of the most important ones.
- The distance of important nodes from those with marginal role is usually large.

If δA is low-rank, efficient techniques for updating $f(A)$ can be found in [Beckermann, Kressner, Schweitzer (2018)].

Example: The bridge

- Adding e, the number of walks in the graph significantly increases;
- The far a node k is from the bridge, the longer the walks passing through e;
- Therefore, we expect $S C(k)$ to significantly varies only for nodes close to the bridge.

Lemma

Let $S=\{s \mid(s, t) \in \delta E\}$ and $T=\{t \mid(s, t) \in \delta E\}$ be respectively the sets of sources and tips of δE, then

$$
\left(\widetilde{A}^{n}\right)_{k \ell}=\left(A^{n}\right)_{k \ell}, \quad \text { for } k \notin S \text { and } \ell \notin T,
$$

for every $n \leq d_{G}(k, S)+d_{G}(T, \ell)=: \delta$.

Remark: $d_{G}(k, S), d_{G}(T, \ell)$ are distances in the original network G.

Polynomial approximation

If both the matrix and the perturbed matrix functions can be expanded in the same series of Faber polynomials:

$$
f(A)=\sum_{j=0}^{\infty} f_{j} \Phi_{j}(A), \quad f(\widetilde{A})=\sum_{j=0}^{\infty} f_{j} \Phi_{j}(\widetilde{A})
$$

then we get

$$
\begin{aligned}
f(\widetilde{A})_{k, \ell}-f(A)_{k, \ell} & =\sum_{j}^{\infty} f_{j}\left(\Phi(\widetilde{A})_{k, \ell}-\Phi_{j}(A)_{k, \ell}\right) .
\end{aligned}
$$

Using the same approach seen for the decay property of banded matrices, we derived the following bound.

The bound

Theorem

Let $W(A)$ and $W(\tilde{A})$ contained in a convex continuum E with connected complement whose boundary is Γ. Moreover, let ϕ be the conformal mapping of E, ψ be its inverse and G_{τ} the set with border $\Gamma_{\tau}=\{w:|\phi(w)|<\tau\}$. Let us assume that $\tau>1, f$ is analytic in G_{τ} and f is bounded on Γ_{τ}. Then

$$
\left|(f(A)-f(\tilde{A}))_{k \ell}\right| \leq \mu_{\tau}(f) \frac{2}{\pi} \frac{\tau}{\tau-1}\left(\frac{1}{\tau}\right)^{\delta+2}
$$

with $\delta=d_{G}(k, S)+d_{G}(T, \ell)$ and

$$
\mu_{\tau}(f)=\int_{\Gamma_{\tau}}|f(\psi(z))| \mathrm{d} z
$$

Corollaries

Let $\delta=d_{G}(k, S)+d_{G}(T, \ell)$. If the boundary of Ω is a horizontal ellipse with semi-axes $a \geq b>0$ and center c, then for $\delta>b-1$

$$
\left|(\exp (A)-\exp (\tilde{A}))_{k \ell}\right| \leq \frac{4 e^{\Re(c)} p(\delta)}{p(\delta)-(a+b) /(\delta+1)}\left(\frac{a+b}{\delta+1} \frac{e^{q(\delta)}}{p(\delta)}\right)^{\delta+1}
$$

with $q(t)=1+\frac{a^{2}-b^{2}}{t^{2}+t \sqrt{t^{2}+a^{2}-b^{2}}}$ and $p(t) \approx 2$.
Moreover, for $0<\epsilon<\left|\alpha^{-1}-c\right|-a$ and $\delta>0$

$$
\left|\left(r_{\alpha}(A)-r_{\alpha}(\tilde{A})\right)_{k \ell}\right| \leq \frac{4}{1-\frac{a+b}{\left(\left|\alpha^{-1}-c\right|-\varepsilon\right) p_{\varepsilon}}} \frac{1}{\varepsilon}\left(\frac{a+b}{\left|\alpha^{-1}-c\right|-\varepsilon} \frac{1}{p_{\varepsilon}}\right)^{\delta+1},
$$

where $p_{\varepsilon} \leq 2$.

Two circles: exponential-centrality

Two circles: resolvent-centrality

Normalized Pajek/Erdos971: exponential-centrality

We added all the missing edges between the 10 nodes with smallest centrality $\exp (A)_{k k}$

London train connections

The nodes are the train stations, and the edges are the existing routes between them (overground, underground, DLR, etc.)
[De Domenico, Solé-Ribalta, Gómez, Arenas, '14].

London train network 1

We added all the missing edges between the 5 nodes with smallest centrality $\exp (A)_{k k}$

London train network 1: Exponential-centrality

London train network 2

We modified the last 5 and 15 nodes changing their weights.

London train network 2: Exponential-centrality

Last 5 nodes.

Last 15 nodes.

Remarks

- The bounds show that the variation of $f(A)_{k \ell}$ decays exponentially with respect to $d_{G}(k, S)+d_{G}(T, \ell)$, the sum of the distances that separates k and ℓ from the set of nodes touched by the perturbed edges in S, T.
- The bounds depend on $W(A), W(\widetilde{A})$ and we gave strategies for their estimation.
- We also proposed a strategy that allows to compute the distances between nodes simultaneously with the computation of the entries of $f(A)$ by Lanczos algorithm.

More details: P., Tudisco, On the stability of network indices defined by means of matrix functions, SIMAX (2018).

Conclusions

- We have introduced the decay phenomenon;
- We have discussed its characterization in terms of matrix and function properties;
- We have shown how to predict it;
- We have seen an application to network analysis.

Tomorrow: Decay phenomenon and...

- (Inexact) Arnoldi's method;
- Rational Krylov subspace method;
- A new approach for linear ODEs.

Conclusions

- We have introduced the decay phenomenon;
- We have discussed its characterization in terms of matrix and function properties;
- We have shown how to predict it;
- We have seen an application to network analysis.

Tomorrow: Decay phenomenon and ...

- (Inexact) Arnoldi's method;
- Rational Krylov subspace method;
- A new approach for linear ODEs.

Thank you for your attention!

Matrix decay phenomenon and its applications II

Stefano Pozza

Charles University, Prague

Seminar on Numerical Analysis
January 23-27, 2023

Outline

January 25, 9:00. Decay phenomenon and sparse matrices

- Introduction;
- Decay characterization and applications;
- Upper bounds for banded matrices;
- Extension to sparse matrices;
- Application to network analysis.

January 26, 9:00. Decay phenomenon and numerical applications

- Decay phenomenon and Krylov subspace methods;
- Applications to the (inexact) Arnoldi algorithm;
- Decay phenomenon and rational Krylov subspace methods;
- Decay phenomenon and linear ODEs.

Matrix decay phenomenon and its applications

Decay phenomenon

Banded matrices and decay - Example

60×60 tridiagonal SPD matrix

Sparsity pattern of A

Banded matrices and decay - Function properties

Function properties influence the decay behavior (pole vs entire)

Banded matrices and decay - Band length

Banded matrices and decay - Spectral properties

[1.0027, 4.9973]

A^{-1}

$\exp (A)$
[0.0027, 3.9973]
[-0.9973, 2.9973]

$(A-2 I)^{-1}$

$\exp (A-2 I)$

Banded matrices and decay - A-priori bounds

By expanding a matrix function into a series of polynomials

$$
f(A)=\sum_{j=0}^{\infty} \alpha_{j} p_{j}(A)
$$

we derived upper bounds in the form

$$
\left|(f(A))_{k, \ell}\right| \leq c \rho^{|k-\ell|}
$$

where $\rho \in(0,1), c>0$ depend on properties of A, f (and ρ can depend on $|k-\ell|)$. To compute the a-priori bound we need to approximate the Field of Values

$$
W(A)=\left\{\boldsymbol{v}^{*} A \boldsymbol{v} \mid \boldsymbol{v} \in \mathbb{C}^{n},\|\boldsymbol{v}\|=1\right\}
$$

Matrix decay phenomenon and its applications

Decay phenomenon and Krylov subspace methods

Model reduction

A possible way to approximate $f(A) \boldsymbol{v}$ is by projecting the problem onto a small subspace, such as the Krylov subspace:

$$
\mathcal{P}_{m}(A, \boldsymbol{v}):=\operatorname{span}\left\{\boldsymbol{v}, A \boldsymbol{v}, \ldots, A^{m-1} \boldsymbol{v}\right\} .
$$

Given a basis U_{m} of $\mathcal{P}_{m}(A, \boldsymbol{v})$, we can define the reduced matrix

$$
T_{m}=U_{m}^{*} A U_{m}
$$

Then we have the model reduction:

$$
f(A) \boldsymbol{v} \approx U_{m} f\left(T_{m}\right) \boldsymbol{w}, \quad \boldsymbol{w}=U_{m}^{*} \boldsymbol{v}
$$

If m is small, computing $f\left(T_{m}\right) \boldsymbol{w}$ is computationally cheaper.
E.g., [Higham, Functions of Matrices, '08]

Arnoldi's method

Given a matrix $A \in \mathbb{R}^{N \times N}$ and a vector $\boldsymbol{v} \neq 0$, Arnoldi's method produces the orthogonal matrix

$$
U_{m}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right]
$$

forming a basis of $\mathcal{P}_{m}(A, \boldsymbol{v})$.
Starting with $\boldsymbol{u}_{1}=\boldsymbol{v} /\|\boldsymbol{v}\|$, Arnoldi's method is a Gram-Schmidt orthogonalization process defined by the recurrences

$$
\begin{aligned}
t_{j+1, j} \boldsymbol{u}_{j+1} & =A \boldsymbol{u}_{j}-\sum_{i=1}^{j} t_{i, j} \boldsymbol{u}_{i}, \quad j=1, \ldots, m \\
t_{i, j} & =\boldsymbol{u}_{i}^{*} A \boldsymbol{u}_{j}, \quad t_{j+1, j}=\left\|\boldsymbol{u}_{j+1}\right\|
\end{aligned}
$$

E.g., [Saad, Iterative Methods for Sparse Linear Systems, '03]

Arnoldi's method

The recurrences have the matrix form:

$$
A U_{m}=U_{m} T_{m}+t_{m+1, m} \boldsymbol{u}_{m+1} \boldsymbol{e}_{m}^{T}
$$

with T_{m} the $m \times m$ upper Hessenberg matrix with entries $t_{i, j}\left(\boldsymbol{e}_{m}\right.$ the m th vector of the canonical basis). By orthogonality we get

$$
T_{m}=U_{m}^{*} A U_{m}
$$

The matrix T_{m} plays two roles in the algorithm:

- It represents the orthogonalization process (coefficients $t_{i, j}$);
- It represents the action of A in the Krylov subspace $\mathcal{P}_{m}(A, \boldsymbol{v})$, i.e.,

$$
U_{m} T_{m} U_{m}^{*}=U_{m} U_{m}^{*} A U_{m} U_{m}^{*}
$$

Hessenberg matrix and decay

T_{m} can be used for matrix-function approximation

$$
f(A) \boldsymbol{v} \approx U_{m} f\left(T_{m}\right) \boldsymbol{e}_{1}
$$

$f(\lambda)=\lambda^{-1} \rightarrow$ FOM.

Sparsity pattern of T_{60}

$\exp \left(T_{60}\right)$ (log scale)

Decay bounds

It is possible to derive a-priori decay bound for $f\left(T_{m}\right)$.

- We know the band length;
- We know f;
- We can derive the necessary spectral information from the input matrix since $W\left(T_{m}\right) \subseteq W(A)$.

Applications: Decay bounds can be used, e.g., for:

- Devise new relaxed approaches (inexact Arnoldi);
- Stopping criteria for iterative solvers in matrix function evaluations and matrix equation solving.
E.g., [Güttel, Schweitzer,'21], [Kürschner, Freitag,'20], [P. , Simoncini,'19].

Matrix function approximation

Joint work with V . Simoncini (University of Bologna)
Let $\mathbf{y}(x)=f(x A) \mathbf{v}$ be the solution to the differential equation

$$
\mathbf{y}^{(d)}(x)=A \mathbf{y}(x), \quad \mathbf{y}(0)=\mathbf{v}, \quad x \geq 0,
$$

with $\mathbf{y}^{(d)}$ the d th derivative. Consider the approximation

$$
\mathbf{y}(x) \approx \mathbf{y}_{m}(x)=U_{m} f\left(x T_{m}\right) \mathbf{e}_{1}
$$

The differential equation residual is given by:

$$
\mathbf{r}_{m}(x)=A \mathbf{y}_{m}(x)-\mathbf{y}_{m}^{(d)}(x)=\mathbf{u}_{m+1} t_{m+1, m} \mathbf{e}_{m}^{T} f\left(x T_{m}\right) \mathbf{e}_{1} .
$$

Residual bound

For simplicity, let us fix $x=1$,

- $\left|\mathbf{e}_{m}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right|$ decays as m increases;
- We can bound $\left|\mathbf{e}_{m}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right|$ a-priori, and hence

$$
\left\|\mathbf{r}_{m}\right\| \leq\left|t_{m+1, m} \| \mathbf{e}_{m}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right|
$$

$A=\operatorname{pde} 225 f($ Matrix Market $), f(A)=e^{-A}, \mathbf{v}=(1, \ldots, 1)^{T} / \sqrt{n}$.

Matrix decay phenomenon and its applications

Applications to the inexact Arnoldi method

Inexact Arnoldi

Joint work with V. Simoncini (University of Bologna)
In inexact Arnoldi, A is assumed to be not known exactly. Then, the matrix-vector product can only be approximated:

$$
A \mathbf{u}_{k} \approx A \mathbf{u}_{k}+\mathbf{w}_{k},
$$

with accuracy $\left\|\mathbf{w}_{k}\right\|<\epsilon$. Then the the original recurrences become

$$
(A+E) U_{m}=U_{m} T_{m}+t_{m+1, m} \boldsymbol{u}_{m+1} \boldsymbol{e}_{m}^{T}, \quad E=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right] U^{*}
$$

We can define the quantities $(x=1)$

$$
\mathbf{r}_{m}=A \mathbf{y}_{m}-\mathbf{y}_{m}^{(d)} \quad \text { and } \quad \rho_{m}=\left|t_{m+1, m} \mathbf{e}_{m}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right|
$$

However, \mathbf{r}_{m} cannot be computed exactly!

A strategy for the inexact Arnoldi

Observe that

- T_{m} is upper-Hessenberg;
- Assuming ϵ small enough, $W(A+E)$ is not much larger than $W(A)$ since $W(A+E) \subset W(A)+W(E)$.

Therefore, by using the same bound seen before, we expect $\rho_{m}=\left|t_{m+1, m} \mathbf{e}_{m}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right|$ to decay.

Since

$$
\left\|\mathbf{r}_{m}\right\| \leq\left|\left\|\mathbf{r}_{m}\right\|-\rho_{m}\right|+\rho_{m}
$$

if $\left|\left\|\mathbf{r}_{m}\right\|-\rho_{m}\right|$ is small, then $\left\|\mathbf{r}_{m}\right\|$ decays too.

A strategy for the inexact Arnoldi method

Note that ([Simoncini, '05], [Simoncini, Szyld, '03]),

$$
\left|\left\|\mathbf{r}_{m}\right\|-\rho_{m}\right| \leq\left\|\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right] f\left(t H_{m}\right) \mathbf{e}_{1}\right\| \leq \sum_{j=1}^{m}\left\|\mathbf{w}_{j}\right\|\left|\mathbf{e}_{j}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right|
$$

Therefore, $\left|\left\|\mathbf{r}_{m}\right\|-\rho_{m}\right|$ is small as long as

$$
\left\|\mathbf{w}_{j}\right\|\left|\mathbf{e}_{j}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right| \leq \text { toll } / m
$$

As a consequence,

- we can relax the accuracy of each iteration $\epsilon_{j}=\left\|w_{j}\right\|$;
- ϵ_{j} can be set a-priori using the bound for $\left|\mathbf{e}_{j}^{T} f\left(T_{m}\right) \mathbf{e}_{1}\right|$.

The smaller is ρ_{m} the larger is the accuracy ϵ_{j}.

Example - $e^{-A} \mathbf{v}$

- $\left\|\mathbf{r}_{j}\right\| \longrightarrow$ constant accuracy strategy, $\epsilon_{j}=$ toll $/ m$, for every j;
- $\left\|\overline{\mathbf{r}}_{j}\right\| \longrightarrow$ previously presented strategy for $\bar{\epsilon}_{j}$.

Matrix pde225 (Matrix Market), $\mathbf{v}=(1, \ldots, 1)^{T} / \sqrt{n}$.

Example $-\exp (-\sqrt{A}) \mathbf{v}$

$A=\operatorname{Toeplitz}(-1,1, \underline{3}, 0.1) \in \mathcal{B}_{200}(1,2), \mathbf{v}=(1, \ldots, 1)^{T} / \sqrt{n}$.

Example $-\exp (-\sqrt{A}) \mathbf{v}$

$$
A=\operatorname{Toeplitz}(-1,1, \underline{3}, 0.1) \in \mathcal{B}_{200}(1,2), \mathbf{v}=(1, \ldots, 1)^{T} / \sqrt{n} .
$$

More details: S. Pozza, V. Simoncini, Decay bounds for functions of banded non-Hermitian matrices, BIT, 2019.

Matrix decay phenomenon and its applications

Decay phenomenon and rational Krylov subspace methods

Rational Krylov Subspace Method

Setting $\sigma=\left[\sigma_{1}, \ldots, \sigma_{m-1}\right]$ with $\sigma_{j} \notin \lambda(A)$, the rational Krylov subspace is defined as

$$
\mathcal{K}_{m}(A, \boldsymbol{v}, \boldsymbol{\sigma}):=\operatorname{span}\left\{\boldsymbol{v},\left(A-\sigma_{1} I\right)^{-1} \boldsymbol{v}, \ldots, \prod_{j=1}^{m-1}\left(A-\sigma_{j} I\right)^{-1} \boldsymbol{v}\right\}
$$

RKSM produces the orthogonal matrix $V_{m}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right]$ basis of $\mathcal{K}_{m}(A, \boldsymbol{v}, \boldsymbol{\sigma})$. RKSM is a Gram-Schmidt orthogonalization:

$$
\begin{aligned}
h_{j+1, j} \boldsymbol{v}_{j+1} & =\left(A-\sigma_{j} /\right)^{-1} \boldsymbol{v}_{j}-\sum_{i=1}^{j} h_{i, j} \boldsymbol{v}_{i}, \quad j=1, \ldots, m \\
h_{i, j} & =\boldsymbol{v}_{i}^{*}\left(A-\sigma_{j} /\right)^{-1} \boldsymbol{v}_{j}, \quad h_{j+1, j}=\left\|\boldsymbol{v}_{j+1}\right\| .
\end{aligned}
$$

RKSM matrices

RKSM recurrences have the matrix form:

$$
A V_{m} H_{m}=V_{m} K_{m}-h_{m+1, m}\left(A-\sigma_{m} I\right) \boldsymbol{v}_{m+1} \boldsymbol{e}_{m}^{T}
$$

with H_{m} the Hessenberg matrix with entries $h_{i, j}$, and

$$
K_{m}=\left(I+H_{m} \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{m}\right)\right)
$$

see, e.g., [Ruhe, '94], [Güttel, '13], [Güttel, Knizhnerman, '13].
The information about the orthogonalization are carried by H_{m}. The reduced-order matrix is defined as

$$
J_{m}:=V_{m}^{*} A V_{m}=K_{m} H_{m}^{-1}-h_{m+1, m} V_{m}^{*}\left(A-\sigma_{m} I\right) \boldsymbol{v}_{m+1} \boldsymbol{e}_{m}^{T} H_{m}^{-1}
$$

which is the projection of A onto $\mathcal{K}_{m}(A, \boldsymbol{v}, \boldsymbol{\sigma})$.

Reduced-order matrix applications

RKSM can be used for the approximation of matrix function

$$
f(A) \boldsymbol{v} \approx V_{m} f\left(J_{m}\right) \boldsymbol{e}_{1}
$$

Another application is the Lyapunov matrix equation. See, e.g., [Guttel, '13] [Knizhnerman, Simoncini,'11], [Simoncini,'15-'16]. J_{m} is generally full. Nevertheless, J_{m}, and $f\left(J_{m}\right)$ exhibit a decay.

See also [Fasino, '05], semiseparable + diag

The hidden sparsity structure of J_{m}

Given the rational function

$$
s_{j}^{(t)}(x):=\frac{q_{j}(x)}{\left(x-\sigma_{t}\right) \cdots\left(x-\sigma_{t+j-1}\right)},
$$

with $t \geq 1$ and $q_{j}(x)$ a polynomial of degree at most j. If the indexes k, ℓ are such that $k \geq t+2$ and $\ell \leq t$, then

$$
\left(s_{j}^{(t)}\left(J_{m}\right)\right)_{k, \ell}=0, \quad j=1, \ldots, k-t-1 .
$$

- The hidden sparsity structure of J_{m} is a consequence of V_{m} orthogonality.
- In Arnoldi's method, the connection between the orthogonalization process and the sparsity pattern of T_{m} is evident.

The hidden sparsity structure of J_{m}

Sparsity pattern of $s_{j}^{(t)}\left(J_{m}\right)$ for J_{20} and Hermitian matrix A.

A-priori decay bound

To derive a-priori decay bounds for $f\left(J_{m}\right)$ we exploit:

- The hidden sparsity structure of J_{m};
- Rational function approximation. Specifically, rational Faber-Dzhrbashyan functions M_{j}, ([Dzhrbashyan,'57], [Suetin,'98], [Beckermann, Reichel,'09]);
- The domain of analyticity of f;
- Information on the field of values of A since $W\left(J_{m}\right) \subseteq W(A)$.

Our results are based on Faber-Dzhrbashyan expansions:

$$
f\left(J_{m}\right)=\sum_{j=0}^{\infty} \alpha_{j} M_{j}\left(J_{m}\right)
$$

See also [Druskin, Knizhnerman, Simoncini, '11], [Knizhnerman, Simoncini, '11]

Field of values and conformal maps

Let $\Omega \supseteq W(A)$ be a convex compact set and let ϕ and ψ be the related conformal map and its inverse, s.t. $\phi(\infty)=\infty$, and $\lim _{z \rightarrow \infty} \phi(z) / z=d>0$.

Upper bounds

Assume $\tau>1, k-\ell>1$, and f analytic on Ω_{τ}. Then

$$
\left|f\left(J_{m}\right)_{k, \ell}\right| \leq 3 \frac{\tau}{\tau-1} \max _{|z|=\tau}|f(\psi(z))| \prod_{t=\ell}^{k-2} \frac{\tau+\left|\phi\left(\sigma_{t}\right)\right|}{\left|\phi\left(\sigma_{t}\right)\right| \tau+1}:=B(k, \ell) .
$$

Setting the coefficients

and a positive integer s, we have the following more refined bound

$$
\left|f\left(J_{m}\right)_{k, \ell}\right| \leq 3\left(\sum_{j=0}^{s-1}\left|\alpha_{j+k-\ell-1}\right|+\frac{B(k, \ell)}{\tau^{s}}\right)
$$

Remarks

- $B(k, \ell)$ depends on the parameter τ;
- For each k, ℓ, we can choose a nearly optimal τ;
- For $f(\lambda)=\lambda$, the bound shows that J_{m} elements decays in the matrix lower part (wannabe Hessenberg);
- The better Ω approximate $W(A)$ the better is the bound;

Numerical tests: Symmetric case, 2D Laplacian

$\left|\left(J_{50}\right)_{:, 2}\right|(+), B(k, \ell)(\circ)$

$\left|\left(\exp \left(J_{50}\right)\right)_{: 2}\right|(+), B(k, \ell)(\circ)$, refined bound $(+)$
$A=L \otimes I+I \otimes L, L=\operatorname{tridiag}(-1,2,-1), n=1600, v$ random, $\lambda(A) \subseteq[-7.9883,-0.0117]$.
$(+)$: coefficients α_{j} computed by MatLab integral , $s \leq 27$,

Numerical tests: Symmetric case

$\left|\left(J_{60}\right)_{:, 2}\right|$

$\left|\left(\left(J_{60}-100 i I\right)^{-1}\right)_{;, 2}\right|$
flowmeter0, Oberwolfach Model Reduction Benchmark
Collection (dynamical systems). Symm., $n=9669$,
$\lambda(A) \subset\left[-2.08 \cdot 10^{3},-1.31 \cdot 10^{-4}\right] . s \leq 53$.

Numerical tests: Non-symmetric case

A is obtained from the centered finite difference discretization of $L(u)=-\Delta u+35 u_{x}+35 u_{y}$, on the unit square, with homogeneous Dirichlet boundary conditions. Non-symmetric, $n=784 . s \leq 20$.

Lyapunov equation

Another application is the Lyapunov matrix equation

$$
A X+X A^{H}=\boldsymbol{c} \boldsymbol{c}^{H}
$$

that can be approximated by solving the reduced-order equation

$$
\begin{gathered}
J_{m} Y_{m}+Y_{m} J_{m}^{H}=\boldsymbol{e}_{1} \boldsymbol{e}_{1}^{T}, \quad X \approx V_{m} Y_{m} V_{m}^{H} \\
Y_{m}=\frac{i}{2 \pi} \int_{-i \infty}^{+i \infty}\left(w I-J_{m}\right)^{-1} \boldsymbol{e}_{1} \boldsymbol{e}_{1}\left(w I+J_{m}\right)^{-1} \mathrm{~d} w
\end{gathered}
$$

Y_{m} decay can be used to estimate the residual.

Numerical tests: Non-symmetric case

Field of values of A (yellow area), eigenvalues of $A(*)$

$\left|Y_{50}\right|$, solution of the reduced-order Lyapunov equation (log scale)

Numerical tests: Y_{m} Lyapunov non-symmetric eq.

$\left|\left(Y_{50}\right) ; 3\right|$

$\operatorname{diag}\left(\left|Y_{50}\right|\right)$

See also [Kürschner, Freitag, 2020].

Remarks

- The matrix $T_{m}=U_{m}^{*} A U_{m}$ from Arnoldi's method is upper-Hessenberg, hence characterized by a decay phenomenon.
- In RKSM, the matrix $J_{m}=V_{m}^{*} A V_{m}$ is generally a full matrix.
- Despite having lost the band structure, J_{m} is still characterized by a decay phenomenon in its lower part.
- We explained and described this decay phenomenon by deriving effective a-priori bounds.
- We derived similar bounds for Lyapunov matrix equations.

More details: P., Simoncini, Functions of rational Krylov space matrices and their decay properties, Numerische Mathematik, 2021.

Matrix decay phenomenon and its applications

Decay phenomenon and linear ODEs

Non-autonomous linear ODEs

Consider the following ordinary differential equation

$$
\partial_{t} y(t)=\tilde{f}(t) y(t), \quad y(0)=1, \quad t \in[0,1]
$$

with $\tilde{f}(t)$ a given analytic function over $[0,1]$.

- We present a new approach for the solution of linear ODEs.
- The new method is meant for large systems of non-autonomous linear ODEs.
- For the sake of simplicity, here, we consider the simpler case where the time-dependent coefficient $\tilde{f}(t) \in \mathbb{C}$.

Joint work with N. Van Buggenhout (Charles University) and P-L. Giscard (ULCO, Calais).

ODE solution expansion

Consider the (shifted) normalized Legendre polynomials $p_{0}(t), p_{1}(t), p_{2}(t), \ldots$, i.e., polynomials s.t.

$$
\int_{0}^{1} p_{k}(\tau) p_{\ell}(\tau) d \tau= \begin{cases}0, & \text { if } k \neq \ell \\ 1, & \text { if } k=\ell\end{cases}
$$

The solution $y(t)$ is an analytic function over $[0,1]$, as such, we can expand it into the series

$$
y(t)=\sum_{j=0}^{\infty} u_{j} p_{j}(t), \quad t \in[0,1] .
$$

ODE solution expansion

Let us define the truncated expansion

$$
y_{m}(t):=\sum_{j=0}^{m} u_{j} p_{j}(t), \quad t \in[0,1] .
$$

Then the error is bounded by

$$
\max _{t \in[0,1]}\left|y(t)-y_{m}(t)\right| \leq \sum_{j=m+1}^{\infty}\left|u_{j}\right| \frac{\sqrt{2 j+1}}{2}
$$

- As $y(t)$ is analytic, the coefficients $\left|u_{j}\right|$ asymptotically converge to zero faster than geometric (decay).
- For m large enough, $\left|u_{m+1}\right|$ is a good approximation of the truncation error.

ODE solution by \star-product

The new approach is based on the so-called \star-product. Given two distributions $g_{1}(t, s), g_{2}(t, s)$ from a certain class,

$$
\left(g_{1} \star g_{2}\right)(t, s):=\int_{-\infty}^{+\infty} g_{1}(t, \tau) g_{2}(\tau, s) d \tau
$$

Then, the ODE solution can be expressed as [P., Giscard, '22]

$$
y(t)=\left(\Theta(t-s) \star\left(1_{\star}-\tilde{f}(t) \Theta(t-s)\right)^{-\star}\right)(t, 0)
$$

with

$$
\Theta(t-s)=\left\{\begin{array}{l}
1, t \geq s \\
0, t<s
\end{array}\right.
$$

(Replacing \tilde{f} with a matrix, we can solve an ODE system.)

*-product discretization

By using the Legendre polynomials, the \star-product expression can be discretized. This leads to transforming the \star-product algebra into a matrix algebra.

$$
\begin{array}{lll}
\tilde{f}(t) \Theta(t-s) & & F_{m} \\
r(t, s)=p(t, s) \star q(t, s) & \text { discr. } & R_{m}=P_{m} Q_{m} \\
p+q & \longrightarrow & P_{m}+Q_{m} \\
1_{\star}=\delta(t-s) & & I_{m}, \text { identity matrix } \\
p^{-\star}(t, s) & & P_{m}^{-1} \\
\left(1_{\star}-p\right)^{-\star}(t, s) & & \left(I_{m}-P_{m}\right)^{-1}
\end{array}
$$

[P., Van Buggenhout, '22]

ODE solution by discretized \star-product

Then, the \star-solution of the ODEs can also be discretized.

$$
\begin{gathered}
y(t)=\left(\Theta(t-s) \star\left(1_{\star}-\tilde{f}(t) \Theta(t-s)\right)^{-\star}\right)(t, 0) \\
\downarrow \operatorname{discr} . \\
\mathbf{u}_{m} \approx H_{m}\left(I_{m}-F_{m}\right)^{-1} \mathbf{e}_{1}
\end{gathered}
$$

Example- $\tilde{f}(t)=\cos (4 t)$

F_{100}

$H_{100}\left(I_{100}-F_{100}\right)^{-1}$

Sparsity pattern of the matrices after truncation $($ tol $=2 e-16)$

Example- $\tilde{f}(t)=\cos (4 t)$

Legendre coefficients of the solution $u(t)$; computed by the \star-approach $(*)$, computed via chebfun knowing that $u(t)=\exp (\cos (4 t)-1)$.

Remarks

- There is a clear relation between the decay of the resolvent of the discretized matrix and the decay of the Legendre coefficients $u_{0}, u_{1} \ldots$;
- We need to determined m a-priori. This means that we need to know how many $u_{0}, u_{1} \ldots$ are needed before solving the linear system;
- A-priori bound on the decay of $\left(I_{m}-F_{m}\right)^{-1}$ may provide an estimate for m.

More details:

- P., Van Buggenhout, $A_{\star \text {-product solver with spectral accuracy for }}$ non-autonomous ordinary differential equations, PAMM, '23.
- P., Van Buggenhout, The \star-product approach for linear ODEs: A numerical study of the scalar case, PAMM, '23.

Conclusion

The decay phenomenon appears in:

- Network/graph analysis;
- Krylov subspace methods (Hessenberg matrix);
- Rational Krylov subspace methods (hidden structure);
- Legendre polynomial expansion of and ODE solution (from a matrix point of view);
- Many other applications.

Its understanding requires combining tools from:

- Polynomial and rational approximation;
- Linear algebra;
- Graph Theory.

Conclusion

The decay phenomenon appears in:

- Network/graph analysis;
- Krylov subspace methods (Hessenberg matrix);
- Rational Krylov subspace methods (hidden structure);
- Legendre polynomial expansion of and ODE solution (from a matrix point of view);
- Many other applications.

Its understanding requires combining tools from:

- Polynomial and rational approximation;
- Linear algebra;
- Graph Theory.

Thank you for your attention!

