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Matrix decay phenomenon and its applications

Introduction
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Sparse matrices

Sparse matrix: small number of nonzero elements (the
number of nonzero elements is O(n)?);

“A matrix is sparse if there is an advantage in exploiting its
zeros” [Duff, Erisman, Reid, ’86].
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Localization and matrices

Sparsity does not take into account the elements’ magnitude.

There are dense matrices where only a small portion of its
elements are non-negligible in magnitude;

The elements with large magnitude are localized in a region of
the matrix (e.g., diagonals);

The magnitude usually tends to decay to zero as we move
away from those regions;

They are said to be localized, or that they exhibit decay.

Refer to: [Benzi, Localization in matrix computation, ’16]
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Matrix functions

Matrix exponential:

exp(A) =
∞∑
j=0

A j

j!
;

Matrix resolvent:

rα(A) = (I − αA)−1, (1/α ̸∈ σ(A)),

?
=

∞∑
j=0

αj A j , (1/α < ρ(A));

Other functions: inverse A−1, square root A1/2, . . .

Refer to: [Higham, Functions of Matrices, ’08].

Stefano Pozza Matrix decay phenomenon and its applications I 7 / 67



Matrix function definition

Matrix function

Let A ∈ Cn×n and f be an analytic function on some open Ω ⊂ C.
Then

f (A) =

∫
Γ
f (z) (zI − A)−1 dz ,

with Γ ⊂ Ω a system of Jordan curves encircling each eigenvalue of
A exactly once, with mathematical positive orientation.

When f is analytic other equivalent definitions exist1. Moreover,

f (z) =
∞∑
j=0

αjz
j , f (A) =

∞∑
j=0

αjA
j ,

if both the series converge (|z | < 1, ρ(A) < 1).

1[Higham, Functions of Matrices, ’08]
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Matrix decay phenomenon and its applications

Decay characterization and
applications
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Banded matrices and decay - Example

A =


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Banded matrices and decay - Function properties

Magnitude of A−1 elements

(log scale)

Magnitude of exp(A) elements

(log scale)

Function properties influence the decay behavior (pole vs entire)
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Banded matrices and decay - Band length
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Banded matrices and decay - Spectral properties
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An application: matrix exponential approximations

An is a sequence of banded matrices of increasing size n;

f (An) displays an off-diagonal decay whose rate is
independent of n.

We want to compute exp(An) by polynomial approximation:

exp(An) ≈ pk(An).

For instance, pk can be given in terms of Chebyshev polynomials
Tk(z). As the Tk are orthogonal polynomials, we get the
recurrences

Tk+1(An) = 2AnTk(An)− Tk−1(An), k = 1, 2, . . . .
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An application: matrix exponential approximations

The most expensive operation in the recurrences:

Tk+1 = 2AnTk(An)− Tk−1(An), k = 1, 2, . . . .

An is banded;

Tk(An) shows a decay. It can be approximated by a banded
matrix Bn,k ≈ Tk(An);

The bandwidth of Bn,k is independent from n.

Therefore
AnTk(An) ≈ AnBn,k ,

Note that the cost of performing AnBn,k is O(n) as n increases.

For certain sequences of matrices An, it is possible to derive O(n)
methods for matrix function approximation [Benzi, Razouk, ’07].
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Other applications

Linear systems: Ax = b, with A, b localized. Compute only
the parts of x where the information is localized, e.g., by
Gaussian elimination ([Duff, Erisman, Reid, ’86]), Monte Carlo
([Benzi, Evans, Hamilton, Pasini, Slattery, ’17]), quadrature ([Golub,
Meurant, ’10], [Bonchi, Esfandiar, Gleich, Greif, Lakshmanan, ’12]), . . .

Preconditioner construction: e.g., based on banded
approximation of inverse ([Concus, Golub, Meurant, ’85]), decay in
the inverse triangular factors ([Benzi, Tuma, ’00]), . . .

Eigenvalue problems: since spectral projectors can be
expressed as matrix functions ([Razouk, ’08], [Benzi, Rinelli, ’22])

Error bound for Krylov subspace approximations: Using the
structure of the Arnoldi upper-Hessenberg matrix ([Ye, ’13],
[Wang, Ye, ’16], [P., Simoncini, ’19]), . . .

. . .
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Matrix decay phenomenon and its applications

Upper bounds for banded matrices
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Bandwidth 1 and Polynomials
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Bandwidth 2 and Polynomials
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Banded matrices

Notation

Bn(β, γ) is the set of banded matrices A ∈ Cn×n with upper
bandwidth β ≥ 0 and lower bandwidth γ ≥ 0, i.e.,

(A)k,ℓ = 0, for ℓ− k > β or k − ℓ > γ.

If A ∈ Bn(β, γ) with β, γ ̸= 0, for

ξ :=

{
⌈(ℓ− k)/β⌉, if k < ℓ
⌈(k − ℓ)/γ⌉, if k ≥ ℓ

,

then
(Am)k,ℓ = 0, for every m < ξ.
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Banded matrices and decay - Polynomial expansion

If it is possible to expand the matrix function into a series of
polynomials

f (A) =
∞∑
j=0

αjpj(A),

then,

f (A)k,ℓ =
∞∑

j= ξ

αjpj(A)k,ℓ.

Assuming |αj | −→ 0 quick enough, and |pj(A)k,ℓ| bounded, then
|f (A)k,ℓ| decays to zero as |k − ℓ| increases.
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Banded matrices and decay - a-priori bounds

Using the previous observations, one can derive upper bounds in
the form

|(f (A))k,ℓ| ≤ cρ|k−ℓ|,

where ρ ∈ (0, 1), c > 0 depend on properties of A, f . In the
non-symmetric case, the Field of Values

W (A) = {v∗Av | v ∈ Cn, ||v || = 1},

can provide the necessary spectral information.

We now show an a-priori bound for a function of a
(non-Hermitian) matrix based on this approach; see [P. Simoncini,

’19] (no use of the Crouzeix’s conjecture), c.f. [Benzi, Boito, ’14], [Benzi, ’20].
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The a-priori bound

Joint work with V. Simoncini (University of Bologna)

The bound takes the general form:

|(f (A))k,ℓ| ≤ p(ξ)

(
1

τ(ξ)

)ξ

,

where p(ξ) → p > 0, and τ(ξ) > 1 depends on f and W (A).
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Faber polynomials - Definition

Let Ω be a continuum with connected complement, ϕ is the
relative conformal map satisfying the following conditions

ϕ(∞) = ∞, lim
z→∞

ϕ(z)

z
= d > 0.

τ

Ω Ωτ
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Faber polynomials - Definition

Consider the Laurent expansion of ϕ:

ϕ(z) = dz + a0 +
a1
z

+
a2
z2

+ . . . .

Then, the nth power of ϕ can be expanded as

(ϕ(z))n = dzn + a
(n)
n−1z

n−1 + · · ·+ a
(n)
0 +

a
(n)
−1

z
+

a
(n)
−2

z2
+ . . . .

The Faber polynomial of degree n for the domain Ω is defined as

Φn(z) = dzn + a
(n)
n−1z

n−1 + · · ·+ a
(n)
0 , for n ≥ 0.

When Ω = [−1, 1], they are the Chebyshev polynomials.

See [Suetin, ’98].
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Properties of Faber polynomials

If f is analytic on Ω then

f (z) =
∞∑
j=0

fjΦj(z), for z ∈ Ω;

If the spectrum of A, σ(A), is contained in Ω, then

f (A) =
∞∑
j=0

fjΦj(A);

If Ω is convex and contains W (A), then ([Beckermann, ’05])

||Φj(A)|| ≤ 2.
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Bound derivation - Idea

Assume A ∈ B(β, γ), Φj define on the domain Ω ⊃ W (A), then

f (A)k,ℓ =
∞∑
j=0

fjΦj(A)k,ℓ =
∞∑
j=ξ

fjΦj(A)k,ℓ

with ξ = ⌈(ℓ− k)/β⌉ for k < ℓ, ξ = ⌈(k − ℓ)/γ⌉ for k > ℓ. Thus

|f (A)k,ℓ| ≤
∞∑
j=ξ

|fj | |Φj(A)k,ℓ| ≤
∞∑
j=ξ

|fj | ∥Φj(A)∥

≤ 2
∞∑
j=ξ

|fj |.

Approximating |fj |, we obtain the bound (it depends on f , Ω, ξ).
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The bound

Theorem

Let A ∈ Bn(β, γ) with W (A) ⊂ Ω. Moreover, let ϕ be the
conformal map of Ω, ψ be its inverse and Gτ the set with border
Γτ = {w : |ϕ(w)| = τ}. Assume that, for τ > 1, f is analytic on
Gτ and bounded on Γτ . Then∣∣∣(f (A))k,ℓ∣∣∣ ≤ 2

τ

τ − 1
max
z∈Γτ

|f (z)|
(
1

τ

)ξ

.

For the given f , Ω and ξ, τ must be chosen so to minimize

max
z∈Γτ

|f (z)|
(
1

τ

)ξ
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Exponential function

Corollary

Let A ∈ Bn(β, γ) with W (A) ⊂ Ω, with Ω’s boundary a horizontal
ellipse with semi-axes a ≥ b > 0 and center c = c1 + ic2 ∈ C,
c1, c2 ∈ R. Then for ξ > b∣∣∣∣(eA)k,ℓ

∣∣∣∣ ≲ 2ec1
(
e
a+ b

2ξ

)ξ

, ξ > b.

A similar bound is derived in a different way in [Wang, Ye, ’16].

Stefano Pozza Matrix decay phenomenon and its applications I 30 / 67



Example - 127-th column of exp(A)
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A = Toeplitz(−i , i ,−2) ∈ Cn×n, n = 200
Condition number of the eigenvector matrix: 4.0e + 29
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Example - 67-th column of exp(A)

−3 −2 −1 0 1 2 3

1

1.5
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2.5
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3.5

4

4.5

5

5.5
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10

−40
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−20
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A = Toeplitz(i , 3i ,−i ,−i) ∈ Cn×n, n = 100
Condition number of the eigenvector matrix 5.5e + 13
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A− 1
2

Since z−
1
2 is defined in C+, Γτ must be in C+.

Corollary

Let A ∈ Bn(β, γ) with W (A) ⊂ Ω ⊂ C+. Ω’s boundary is a
horizontal ellipse with semi-axes a ≥ b > 0 and center c ∈ C.
Then, for any ε ∈ R with 0 < ε ≤ |c| −

√
a(a+ b)∣∣∣∣(A− 1

2

)
k,ℓ

∣∣∣∣ ≲ 2√
ε
p2(ε)

(
a+ b

|c | − ε
q2(ε)

)ξ

with

p2(ε) =

∣∣∣c(1 − ε/|c|) +
√

c2(1 − ε/|c|)2 − (a2 − b2)2
∣∣∣∣∣∣c(1 − ε/|c|) +

√
c2(1 − ε/|c|)2 − (a2 − b2)2

∣∣∣ − (a + b)
.

q2(ε) =
1

|1 +
√

1 − (a2 − b2)/(c(1 − ε/|c|))2|
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Example - 67-th column of A− 1
2
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A = Toeplitz(i , 7 + 3i ,−i ,−i) ∈ B100(1, 2), ε = 0.05
Condition number of the eigenvector matrix: 5.5e + 13
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Example - 67-th column of A− 1
2
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A = Toeplitz(i , 3 + 3i ,−i ,−i) ∈ B100(1, 2), ε = 0.05
Condition number of the eigenvector matrix: 1.2e + 24
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Summarizing

We presented a family of bounds for the decay of functions of
banded matrices;

The bounds depend on the shape of the matrix field of values and
on the domain of analyticity of the function;

The better we approximate the field of values, the better the bound.

More details: P., Simoncini, Inexact Arnoldi residual estimates and
decay properties for functions of non-Hermitian matrices, BIT
(2019).
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Matrix decay phenomenon and its applications

Extension to sparse matrices
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Sparse matrices and decay: A graph interpretation

Any graph G = (V ,E ) is represented by its adjacency matrix A.
Vice versa, any matrix A represents a (weighted) graph.

V = {1, 2, . . . , 5}, E = {a, b, . . . , g}

A =

1
2
3
4
5


1 1

1
1 1

1 1



1 2 3 4 5

(Am)k,ℓ = 0, if dist(k, ℓ) > m

dist(k , ℓ) is the geodesic distance from k to ℓ.
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Graphs and Polynomials

1
2
3
4
5


∗ ∗

∗
∗ ∗

∗ ∗


A


∗ ∗ ∗
∗ ∗
∗ ∗ ∗ ∗

∗ ∗


A2


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗


A3

1
2
3
4
5


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗


A4
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A-priori bound for sparse matrices

For banded matrices we, generally, have bounds of the form:

|(f (A))k,ℓ| ≲ c

(
1

τ

)ξ

.

Using (Am)k,ℓ = 0, if dist(k , ℓ) > m, they can be extended to the
sparse case as follows:

|(f (A))k,ℓ| ≲ c

(
1

τ

)dist(k,ℓ)

.

[Benzi, Razouk, ’07]
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Decay phenomenon and graphs: An example

1

2
...

111
112
...

221
222



1 1

1
. . .

. . . 1
1 1 1

1 1 1

1
. . .

. . . 1
1 1



= exp(A) =
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Matrix decay phenomenon and its applications

Application to network analysis
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Counting walks in graphs

A walk from k to ℓ is a path from the node k to the node ℓ that
admits repeated edges (it is said to be closed when k = ℓ).

(An)k,ℓ = number of walks of length n from k to ℓ.

1 −→ 4 :

length 3: b, c , e

length 4: a, b, c , e

length 6: b, c , d , b, c , e

length 7: b, c, d , b, c , e, g

. . .
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Matrix powers and walks

1
2
3
4
5


1 1

1
1 1

1 1


A


1 1 1
1 1
1 1 1 1

1 1


A2


2 1 1 1
1 1 1 1
1 1 1 1 1

1 1


A3

1
2
3
4
5


3 2 1 2 1
1 1 1 1 1
2 1 1 2 1

1 1


A4
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Tridiagonal matrix
1 1
1 1 1

1 1 1
1 1 1

1 1


A


2 2 1
2 3 2 1
1 2 3 2 1

1 2 3 2
1 2 2


A2


4 5 3 1
5 7 6 3 1
3 6 7 6 3
1 3 6 7 5

1 3 5 4


A3


9 12 9 4 ?
12 18 16 10 4
9 16 19 16 9
4 10 16 18 12
? 4 9 12 9


A4
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Tridiagonal matrix
1 1
1 1 1

1 1 1
1 1 1

1 1


A


2 2 1
2 3 2 1
1 2 3 2 1

1 2 3 2
1 2 2


A2


4 5 3 1
5 7 6 3 1
3 6 7 6 3
1 3 6 7 5

1 3 5 4


A3


9 12 9 4 1
12 18 16 10 4
9 16 19 16 9
4 10 16 18 12
1 4 9 12 9


A4
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Subgraph centrality: counting closed walks


1 1

1
1 1

1 1


A


1 1 1
1 1
1 1 1 1

1 1


A2


2 1 1 1
1 1 1 1
1 1 1 1 1

1 1


A3


3 2 1 2 1
1 1 1 1 1
2 1 1 2 1

1 1


A4
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Subgraph centrality: counting closed walks


1 1

1
1 1

1 1


A

+


1 1 1
1 1
1 1 1 1

1 1


A2

+


2 1 1 1
1 1 1 1
1 1 1 1 1

1 1


A3

+


3 2 1 2 1
1 1 1 1 1
2 1 1 2 1

1 1


A4

SC(1) = 1 + 1 + 2 + 3 + . . .

Divergent!
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Subgraph centrality: counting closed walks

α1


1 1

1
1 1

1 1


A

+α2


1 1 1
1 1
1 1 1 1

1 1


A2

+α3


2 1 1 1
1 1 1 1
1 1 1 1 1

1 1

+ . . .

A3

SC (1) = α0 + α1 + α2 + 2α3 + 3α4 + . . .

= α0 + α1A1,1 + α2(A
2)1,1 + α3(A

3)1,1 + α4(A
4)1,1 + . . .

=

 ∞∑
j=0

αjA
j


1,1

= f (A)1,1

It is a matrix function when the series converges.
[Estrada, Rodriguez-Velazquez, ’05]

Stefano Pozza Matrix decay phenomenon and its applications I 49 / 67



Exponential and resolvent indexes

Usually, the following functions are considered:

exp(A) =
∞∑
n=0

1

n!
An, rα(A) =

∞∑
n=0

αn An = (I − αA)−1 .

Subgraph centrality references (incomplete list)

[Arrigo, Higham, Noferini, Wood, ’22]
[Arrigo, Durastante, ’21]
[Benzi, Boito, ’20]
[Arrigo, Higham, ’17]
[Aprahamian, Higham, Higham, ’16]
[Benzi, Klymko, ’13]
[Benzi, Estrada, Klymko, ’13]

[Estrada, Hatano, Benzi, ’12]
[Estrada, ’12]
[Estrada, Higham, ’10]
[Estrada, Hatano, ’08]
[Newman, Barabasi, Watts, ’06]
[Estrada, Rodŕıguez-Velázquez, ’05]
. . .
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Application: Stability under sparse perturbation

Joint work with F. Tudisco (GSSI Gran Sasso Science Institute).

Consider G = (V ,E ) with adjacency matrix A. Let us add, remove
or simply modify the edges in the set δE , obtaining

G̃ = (V , Ẽ ),

with Ẽ ⊂ E ∪ δE and with adjacency matrix Ã = A+ δA.
We have derived bounds for

|f (A)k,ℓ − f (A+ δA)k,ℓ|

which enlighten the dependency on the distance that separates
either k or ℓ from the nodes touched by the edges in δE .
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Motivations

Computing the entries of f (A) is a costly operation.

Often only the first most important nodes are needed.

Typically modifying a few marginal edges does not change the
ranking of the most important ones.

The distance of important nodes from those with marginal
role is usually large.

If δA is low-rank, efficient techniques for updating f (A) can be
found in [Beckermann, Kressner, Schweitzer (2018)].
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Example: The bridge

1

2
...

111
112
...

221
222



1 1

1
. . .

. . . 1
1 1 1

1 1 1

1
. . .

. . . 1
1 1



Adding e, the number of walks in the graph significantly
increases;

The far a node k is from the bridge, the longer the walks
passing through e;

Therefore, we expect SC (k) to significantly varies only for
nodes close to the bridge.
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Lemma

Let S = {s|(s, t) ∈ δE} and T = {t|(s, t) ∈ δE} be respectively
the sets of sources and tips of δE , then

(Ãn)kℓ = (An)kℓ, for k /∈ S and ℓ /∈ T ,

for every n ≤ dG (k, S) + dG (T , ℓ) =: δ.

Remark: dG (k ,S), dG (T , ℓ) are distances in the original network G .
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Polynomial approximation

If both the matrix and the perturbed matrix functions can be
expanded in the same series of Faber polynomials:

f (A) =
∞∑
j=0

fjΦj(A), f (Ã) =
∞∑
j=0

fjΦj(Ã),

then we get

f (Ã)k,ℓ − f (A)k,ℓ =
∞∑

j= δ + 1

fj(Φ(Ã)k,ℓ − Φj(A)k,ℓ).

Using the same approach seen for the decay property of banded
matrices, we derived the following bound.
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The bound

Theorem

Let W (A) and W (Ã) contained in a convex continuum E with
connected complement whose boundary is Γ. Moreover, let ϕ be
the conformal mapping of E , ψ be its inverse and Gτ the set with
border Γτ = {w : |ϕ(w)| < τ}. Let us assume that τ > 1, f is
analytic in Gτ and f is bounded on Γτ . Then∣∣∣(f (A)− f (Ã)

)
kℓ

∣∣∣ ≤ µτ (f )
2

π

τ

τ − 1

(
1

τ

)δ+2

,

with δ = dG (k, S) + dG (T , ℓ) and

µτ (f ) =

∫
Γτ

|f (ψ(z))|dz .
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Corollaries

Let δ = dG (k ,S) + dG (T , ℓ). If the boundary of Ω is a horizontal
ellipse with semi-axes a ≥ b > 0 and center c , then for δ > b − 1

∣∣∣(exp(A)− exp(Ã)
)
kℓ

∣∣∣ ≤ 4eℜ(c)p(δ)

p(δ)− (a+ b)/(δ + 1)

(
a+ b

δ + 1

eq(δ)

p(δ)

)δ+1

,

with q(t) = 1 + a2−b2

t2+t
√
t2+a2−b2

and p(t) ≈ 2.

Moreover, for 0 < ϵ < |α−1 − c | − a and δ > 0∣∣∣(rα(A)− rα(Ã)
)
kℓ

∣∣∣ ≤ 4

1− a+b
(|α−1−c|−ε)pε

1

ε

(
a+ b

|α−1 − c | − ε

1

pε

)δ+1

,

where pε ≤ 2.
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Two circles: exponential-centrality
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Two circles: resolvent-centrality
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Normalized Pajek/Erdos971: exponential-centrality

We added all the missing edges between the 10 nodes with
smallest centrality exp(A)kk
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London train connections

The nodes are the train stations, and the edges are the existing
routes between them (overground, underground, DLR, etc.)
[De Domenico, Solé-Ribalta, Gómez, Arenas, ’14].
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London train network 1

We added all the missing edges between the 5 nodes with smallest
centrality exp(A)kk
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London train network 1: Exponential-centrality
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London train network 2

We modified the last 5 and 15 nodes changing their weights.
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London train network 2: Exponential-centrality

100 200 300
10 -20

10 -10

10 0

10 10

100 200 300
10 -20

10 -10

10 0

10 10

Last 5 nodes. Last 15 nodes.
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Remarks

The bounds show that the variation of f (A)kℓ decays
exponentially with respect to dG (k ,S) + dG (T , ℓ), the sum of
the distances that separates k and ℓ from the set of nodes
touched by the perturbed edges in S ,T .

The bounds depend on W (A), W (Ã) and we gave strategies
for their estimation.

We also proposed a strategy that allows to compute the
distances between nodes simultaneously with the computation
of the entries of f (A) by Lanczos algorithm.

More details: P., Tudisco, On the stability of network indices
defined by means of matrix functions, SIMAX (2018).
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Conclusions

We have introduced the decay phenomenon;

We have discussed its characterization in terms of matrix and
function properties;

We have shown how to predict it;

We have seen an application to network analysis.

Tomorrow: Decay phenomenon and . . .

(Inexact) Arnoldi’s method;

Rational Krylov subspace method;

A new approach for linear ODEs.

Thank you for your attention!
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Outline

January 25, 9:00. Decay phenomenon and sparse matrices

Introduction;

Decay characterization and applications;

Upper bounds for banded matrices;

Extension to sparse matrices;

Application to network analysis.

January 26, 9:00. Decay phenomenon and numerical applications

Decay phenomenon and Krylov subspace methods;

Applications to the (inexact) Arnoldi algorithm;

Decay phenomenon and rational Krylov subspace methods;

Decay phenomenon and linear ODEs.
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Matrix decay phenomenon and its applications

Decay phenomenon

Stefano Pozza Matrix decay phenomenon and its applications II 3 / 50



Banded matrices and decay - Example

A =



3 1 0 · · · 0

1 3 1
...

0 1
. . .

. . . 0
...

. . .
. . . 1

0 · · · 0 1 3



60× 60 tridiagonal SPD matrix

0 10 20 30 40 50 60

nz = 178

0

10

20

30

40

50

60

Sparsity pattern of A
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Banded matrices and decay - Function properties

Magnitude of A−1 elements

(log scale)

Magnitude of exp(A) elements

(log scale)

Function properties influence the decay behavior (pole vs entire)
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Banded matrices and decay - Band length

A−1, A =

0 10 20 30 40 50 60

nz = 178
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B−1, B =
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Banded matrices and decay - Spectral properties

[1.0027, 4.9973]

A−1

[0.0027, 3.9973]

(A− I )−1

[−0.9973, 2.9973]

0

20

40

60

0

20

40

60

-1

-0.5

0

0.5

1

(A− 2I )−1

exp(A) exp(A− I ) exp(A− 2I )
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Banded matrices and decay - A-priori bounds

By expanding a matrix function into a series of polynomials

f (A) =
∞∑
j=0

αjpj(A),

we derived upper bounds in the form

|(f (A))k,ℓ| ≤ cρ|k−ℓ|,

where ρ ∈ (0, 1), c > 0 depend on properties of A, f (and ρ can
depend on |k − ℓ|). To compute the a-priori bound we need to
approximate the Field of Values

W (A) = {v∗Av | v ∈ Cn, ||v || = 1}.
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Matrix decay phenomenon and its applications

Decay phenomenon and Krylov
subspace methods
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Model reduction

A possible way to approximate f (A)v is by projecting the problem
onto a small subspace, such as the Krylov subspace:

Pm(A, v) := span
{
v ,A v , . . . ,Am−1 v

}
.

Given a basis Um of Pm(A, v), we can define the reduced matrix

Tm = U∗
mAUm.

Then we have the model reduction:

f (A)v ≈ Umf (Tm)w , w = U∗
mv .

If m is small, computing f (Tm)w is computationally cheaper.

E.g., [Higham, Functions of Matrices, ’08]
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Arnoldi’s method

Given a matrix A ∈ RN×N and a vector v ̸= 0, Arnoldi’s method
produces the orthogonal matrix

Um = [u1, . . . ,um],

forming a basis of Pm(A, v).

Starting with u1 = v/∥v∥, Arnoldi’s method is a Gram-Schmidt
orthogonalization process defined by the recurrences

tj+1,ju j+1 = Au j −
j∑

i=1

ti ,ju i , j = 1, . . . ,m.

ti ,j = u∗
i Au j , tj+1,j = ∥u j+1∥.

E.g., [Saad, Iterative Methods for Sparse Linear Systems, ’03]
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Arnoldi’s method

The recurrences have the matrix form:

AUm = UmTm + tm+1,mum+1eT
m,

with Tm the m ×m upper Hessenberg matrix with entries ti ,j (em

the mth vector of the canonical basis). By orthogonality we get

Tm = U∗
mAUm.

The matrix Tm plays two roles in the algorithm:

It represents the orthogonalization process (coefficients ti ,j);

It represents the action of A in the Krylov subspace Pm(A, v),
i.e.,

UmTmU
∗
m = UmU

∗
mAUmU

∗
m.
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Hessenberg matrix and decay

Tm can be used for matrix-function approximation

f (A)v ≈ Umf (Tm)e1,

f (λ) = λ−1 → FOM.

0 10 20 30 40 50 60

nz = 1889

0

10

20

30

40

50

60

Sparsity pattern of T60 exp(T60) (log scale)
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Decay bounds

It is possible to derive a-priori decay bound for f (Tm).

We know the band length;

We know f ;

We can derive the necessary spectral information from the
input matrix since W (Tm) ⊆ W (A).

Applications: Decay bounds can be used, e.g., for:

Devise new relaxed approaches (inexact Arnoldi);

Stopping criteria for iterative solvers in matrix function
evaluations and matrix equation solving.

E.g., [Güttel, Schweitzer,’21], [Kürschner, Freitag,’20], [P. , Simoncini,’19].
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Matrix function approximation

Joint work with V. Simoncini (University of Bologna)

Let y(x) = f (xA)v be the solution to the differential equation

y(d)(x) = A y(x), y(0) = v, x ≥ 0,

with y(d) the dth derivative. Consider the approximation

y(x) ≈ ym(x) = Umf (xTm) e1.

The differential equation residual is given by:

rm(x) = A ym(x)− y
(d)
m (x) = um+1tm+1,m eTmf (xTm) e1.
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Residual bound

For simplicity, let us fix x = 1,

|eTmf (Tm) e1| decays as m increases;

We can bound |eTmf (Tm) e1| a-priori, and hence

∥rm∥ ≤ |tm+1,m||eTmf (Tm) e1|.
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A = pde225f (Matrix Market), f (A) = e−A, v = (1, . . . , 1)T/
√
n.
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Matrix decay phenomenon and its applications

Applications to the inexact
Arnoldi method
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Inexact Arnoldi

Joint work with V. Simoncini (University of Bologna)

In inexact Arnoldi, A is assumed to be not known exactly. Then,
the matrix-vector product can only be approximated:

Auk ≈ Auk +wk ,

with accuracy ∥wk∥ < ϵ. Then the the original recurrences become

(A+ E )Um = UmTm + tm+1,mum+1eT
m, E = [w1, . . . ,wm]U

∗.

We can define the quantities (x = 1)

rm = Aym − y
(d)
m and ρm = |tm+1,me

T
mf (Tm)e1|.

However, rm cannot be computed exactly!
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A strategy for the inexact Arnoldi

Observe that

Tm is upper-Hessenberg;

Assuming ϵ small enough, W (A+ E ) is not much larger than
W (A) since W (A+ E ) ⊂ W (A) +W (E ).

Therefore, by using the same bound seen before, we expect
ρm = |tm+1,meTmf (Tm)e1| to decay.

Since
∥rm∥ ≤ |∥rm∥ − ρm|+ ρm,

if |∥rm∥ − ρm| is small, then ∥rm∥ decays too.
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A strategy for the inexact Arnoldi method

Note that ([Simoncini, ’05], [Simoncini, Szyld, ’03]),

|∥rm∥ − ρm| ≤ ∥[w1, . . . ,wm]f (tHm)e1∥ ≤
m∑
j=1

∥wj∥ |eTj f (Tm)e1|,

Therefore, |∥rm∥ − ρm| is small as long as

∥wj∥ |eTj f (Tm)e1| ≤ toll/m

As a consequence,

we can relax the accuracy of each iteration ϵj = ∥wj∥;
ϵj can be set a-priori using the bound for |eTj f (Tm)e1|.

The smaller is ρm the larger is the accuracy ϵj .
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Example - e−Av

∥rj∥ −→ constant accuracy strategy, ϵj = toll/m, for every j ;

∥r̄j∥ −→ previously presented strategy for ϵ̄j .
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Matrix pde225 (Matrix Market), v = (1, . . . , 1)T/
√
n.
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Example - exp(−
√
A)v
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A = Toeplitz(−1, 1, 3, 0.1) ∈ B200(1, 2), v = (1, . . . , 1)T/
√
n.

More details: S. Pozza, V. Simoncini, Decay bounds for functions
of banded non-Hermitian matrices, BIT, 2019.
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Example - exp(−
√
A)v
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More details: S. Pozza, V. Simoncini, Decay bounds for functions
of banded non-Hermitian matrices, BIT, 2019.

Stefano Pozza Matrix decay phenomenon and its applications II 22 / 50



Matrix decay phenomenon and its applications

Decay phenomenon and rational
Krylov subspace methods
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Rational Krylov Subspace Method

Setting σ = [σ1, . . . , σm−1] with σj /∈ λ(A), the rational Krylov
subspace is defined as

Km(A, v ,σ):=span

v , (A−σ1I )−1 v , . . . ,
m−1∏
j=1

(A−σj I )−1 v

 .

RKSM produces the orthogonal matrix Vm = [v1, . . . , vm] basis of
Km(A, v ,σ). RKSM is a Gram-Schmidt orthogonalization:

hj+1,jv j+1 = (A− σj I )
−1v j −

j∑
i=1

hi ,jv i , j = 1, . . . ,m,

hi ,j = v∗
i (A− σj I )

−1v j , hj+1,j = ∥v j+1∥.
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RKSM matrices

RKSM recurrences have the matrix form:

AVmHm = VmKm − hm+1,m(A− σmI )vm+1eT
m,

with Hm the Hessenberg matrix with entries hi ,j , and

Km = (I + Hm diag(σ1, . . . , σm));

see, e.g., [Ruhe, ’94], [Güttel, ’13], [Güttel, Knizhnerman, ’13].
The information about the orthogonalization are carried by Hm.
The reduced-order matrix is defined as

Jm := V ∗
mAVm = Km H−1

m − hm+1,mV
∗
m(A− σmI ) vm+1eT

m H−1
m ,

which is the projection of A onto Km(A, v ,σ).
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Reduced-order matrix applications

RKSM can be used for the approximation of matrix function

f (A)v ≈ Vmf (Jm)e1;

Another application is the Lyapunov matrix equation. See, e.g.,

[Guttel, ’13] [Knizhnerman, Simoncini,’11], [Simoncini,’15-’16].
Jm is generally full. Nevertheless, Jm, and f (Jm) exhibit a decay.

J60 exp(J60)

?

See also [Fasino, ’05], semiseparable + diag
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The hidden sparsity structure of Jm

Given the rational function

s
(t)
j (x) :=

qj(x)

(x − σt) · · · (x − σt+j−1)
,

with t ≥ 1 and qj(x) a polynomial of degree at most j . If the
indexes k, ℓ are such that k ≥ t + 2 and ℓ ≤ t, then(

s
(t)
j (Jm)

)
k,ℓ

= 0, j = 1, . . . , k − t − 1.

The hidden sparsity structure of Jm is a consequence of Vm

orthogonality.

In Arnoldi’s method, the connection between the
orthogonalization process and the sparsity pattern of Tm is
evident.
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The hidden sparsity structure of Jm
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Sparsity pattern of s
(t)
j (Jm) for J20 and Hermitian matrix A.
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A-priori decay bound

To derive a-priori decay bounds for f (Jm) we exploit:

The hidden sparsity structure of Jm;

Rational function approximation. Specifically, rational
Faber-Dzhrbashyan functions Mj , ([Dzhrbashyan,’57], [Suetin,’98],
[Beckermann, Reichel,’09]);

The domain of analyticity of f ;

Information on the field of values of A since W (Jm) ⊆ W (A).

Our results are based on Faber-Dzhrbashyan expansions:

f (Jm) =
∞∑
j=0

αjMj(Jm).

See also [Druskin, Knizhnerman, Simoncini, ’11], [Knizhnerman, Simoncini, ’11]
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Field of values and conformal maps

Let Ω ⊇ W (A) be a convex compact set and let ϕ and ψ be the
related conformal map and its inverse, s.t. ϕ(∞) = ∞, and
limz→∞ ϕ(z)/z = d > 0.

τ

Ω Ωτ
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Upper bounds

Assume τ > 1, k − ℓ > 1, and f analytic on Ωτ . Then

|f (Jm)k,ℓ| ≤ 3
τ

τ − 1
max
|z|=τ

|f (ψ(z))|
k−2∏
t=ℓ

τ + |ϕ(σt)|
|ϕ(σt)|τ + 1

:= B(k , ℓ).

Setting the coefficients

αj =
1

2πi

∫
|z|=τ

f (ψ(z))

z

k−2∏
t=ℓ

z − ϕ(σt)

ϕ(σt)z − 1

ϕ(σt)

|ϕ(σt)|

(
−1

z

)j−k+ℓ+2

dz .

and a positive integer s, we have the following more refined bound

|f (Jm)k,ℓ| ≤ 3

s−1∑
j=0

|αj+k−ℓ−1|+
B(k , ℓ)

τ s

 .
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Remarks

B(k, ℓ) depends on the parameter τ ;

For each k , ℓ, we can choose a nearly optimal τ ;

For f (λ) = λ, the bound shows that Jm elements decays in
the matrix lower part (wannabe Hessenberg);

The better Ω approximate W (A) the better is the bound;
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Numerical tests: Symmetric case, 2D Laplacian
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refined bound (+)

A = L⊗ I + I ⊗ L, L = tridiag(−1, 2,−1), n = 1600, v random,
λ(A) ⊆ [−7.9883,−0.0117].
(+): coefficients αj computed by MatLab integral , s ≤ 27.
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Numerical tests: Symmetric case
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flowmeter0 , Oberwolfach Model Reduction Benchmark
Collection (dynamical systems). Symm., n = 9669,
λ(A) ⊂ [−2.08 · 103,−1.31 · 10−4]. s ≤ 53.
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Numerical tests: Non-symmetric case
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A is obtained from the centered finite difference discretization of
L(u) = −∆u+35ux +35uy , on the unit square, with homogeneous
Dirichlet boundary conditions. Non-symmetric, n = 784. s ≤ 20.
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Lyapunov equation

Another application is the Lyapunov matrix equation

AX + XAH = ccH .

that can be approximated by solving the reduced-order equation

JmYm + Ym JHm = e1eT
1 , X ≈ VmYmV

H
m ,

Ym =
i

2π

∫ +i∞

−i∞
(wI − Jm)

−1e1e1(wI + Jm)
−1 dw .

Ym decay can be used to estimate the residual.
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Numerical tests: Non-symmetric case
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Numerical tests: Ym Lyapunov non-symmetric eq.
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See also [Kürschner, Freitag, 2020].
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Remarks

The matrix Tm = U∗
mAUm from Arnoldi’s method is

upper-Hessenberg, hence characterized by a decay
phenomenon.

In RKSM, the matrix Jm = V ∗
mAVm is generally a full matrix.

Despite having lost the band structure, Jm is still
characterized by a decay phenomenon in its lower part.

We explained and described this decay phenomenon by
deriving effective a-priori bounds.

We derived similar bounds for Lyapunov matrix equations.

More details: P., Simoncini, Functions of rational Krylov space matrices

and their decay properties, Numerische Mathematik, 2021.
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Matrix decay phenomenon and its applications

Decay phenomenon and linear ODEs
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Non-autonomous linear ODEs

Consider the following ordinary differential equation

∂ty(t) = f̃ (t)y(t), y(0) = 1, t ∈ [0, 1],

with f̃ (t) a given analytic function over [0, 1].

We present a new approach for the solution of linear ODEs.

The new method is meant for large systems of
non-autonomous linear ODEs.

For the sake of simplicity, here, we consider the simpler case
where the time-dependent coefficient f̃ (t) ∈ C.

Joint work with N. Van Buggenhout (Charles University) and
P-L. Giscard (ULCO, Calais).
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ODE solution expansion

Consider the (shifted) normalized Legendre polynomials
p0(t), p1(t), p2(t), . . . , i.e., polynomials s.t.∫ 1

0
pk(τ)pℓ(τ)dτ =

{
0, if k ̸= ℓ

1, if k = ℓ

The solution y(t) is an analytic function over [0, 1], as such, we
can expand it into the series

y(t) =
∞∑
j=0

ujpj(t), t ∈ [0, 1].
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ODE solution expansion

Let us define the truncated expansion

ym(t) :=
m∑
j=0

ujpj(t), t ∈ [0, 1].

Then the error is bounded by

max
t∈[0,1]

|y(t)− ym(t)| ≤
∞∑

j=m+1

|uj |
√
2j + 1

2
.

As y(t) is analytic, the coefficients |uj | asymptotically
converge to zero faster than geometric (decay).

For m large enough, |um+1| is a good approximation of the
truncation error.
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ODE solution by ⋆-product

The new approach is based on the so-called ⋆-product. Given two
distributions g1(t, s), g2(t, s) from a certain class,

(g1 ⋆ g2) (t, s) :=

∫ +∞

−∞
g1(t, τ)g2(τ, s) dτ.

Then, the ODE solution can be expressed as [P., Giscard, ’22]

y(t) =
(
Θ(t − s) ⋆ (1⋆ − f̃ (t)Θ(t − s))−⋆

)
(t, 0),

with

Θ(t − s) =

{
1, t ≥ s,
0, t < s

.

(Replacing f̃ with a matrix, we can solve an ODE system.)
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⋆-product discretization

By using the Legendre polynomials, the ⋆-product expression can
be discretized. This leads to transforming the ⋆-product algebra
into a matrix algebra.

f̃ (t)Θ(t − s) Fm
r(t, s) = p(t, s) ⋆ q(t, s) discr. Rm = PmQm

p + q −→ Pm + Qm

1⋆ = δ(t − s) Im, identity matrix
p−⋆(t, s) P−1

m

(1⋆ − p)−⋆(t, s) (Im − Pm)
−1

[P., Van Buggenhout, ’22]
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ODE solution by discretized ⋆-product

Then, the ⋆-solution of the ODEs can also be discretized.

y(t) =
(
Θ(t − s) ⋆ (1⋆ − f̃ (t)Θ(t − s))−⋆

)
(t, 0)

↓ discr .

um ≈ Hm(Im − Fm)
−1e1



u1

u2

u3

u4

u5
...


≈



∗

∗ ∗

∗ ∗

∗ ∗

∗
. . .

. . .





∗ ∗ ∗ ∗ ∗ . . .

∗ ∗ ∗ ∗ ∗
. . .

∗ ∗ ∗ ∗ ∗
. . .

∗ ∗ ∗ ∗ ∗
. . .

∗ ∗ ∗ ∗ ∗
. . .

...
. . .

. . .
. . .

. . .
. . .



−1 

1

0

0

0

0

0


decay ↑ decay ↑ banded by truncation
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Example- f̃ (t) = cos(4t)

F100 H100(I100 − F100)
−1

Sparsity pattern of the matrices after truncation (tol = 2e − 16)
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Example- f̃ (t) = cos(4t)

Legendre coefficients of the solution u(t); computed by the
⋆-approach (∗), computed via chebfun knowing that
u(t) = exp(cos(4t)− 1).
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Remarks

There is a clear relation between the decay of the resolvent of
the discretized matrix and the decay of the Legendre
coefficients u0, u1 . . . ;

We need to determined m a-priori. This means that we need
to know how many u0, u1 . . . are needed before solving the
linear system;

A-priori bound on the decay of (Im − Fm)
−1 may provide an

estimate for m.

More details:

P., Van Buggenhout, A ⋆-product solver with spectral accuracy for
non-autonomous ordinary differential equations, PAMM, ’23.

P., Van Buggenhout, The ⋆-product approach for linear ODEs: A
numerical study of the scalar case, PAMM, ’23.
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Conclusion

The decay phenomenon appears in:

Network/graph analysis;

Krylov subspace methods (Hessenberg matrix);

Rational Krylov subspace methods (hidden structure);

Legendre polynomial expansion of and ODE solution (from a
matrix point of view);

Many other applications.

Its understanding requires combining tools from:

Polynomial and rational approximation;

Linear algebra;

Graph Theory.

Thank you for your attention!

Stefano Pozza Matrix decay phenomenon and its applications II 50 / 50



Conclusion

The decay phenomenon appears in:

Network/graph analysis;

Krylov subspace methods (Hessenberg matrix);

Rational Krylov subspace methods (hidden structure);

Legendre polynomial expansion of and ODE solution (from a
matrix point of view);

Many other applications.

Its understanding requires combining tools from:

Polynomial and rational approximation;

Linear algebra;

Graph Theory.

Thank you for your attention!

Stefano Pozza Matrix decay phenomenon and its applications II 50 / 50


	SNA23_slides1
	SNA23_slides2

