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January 25, 9:00. Decay phenomenon and sparse matrices

Introduction;

Decay characterization and applications;
Upper bounds for banded matrices;

Extension to sparse matrices;

Application to network analysis.

January 26, 9:00. Decay phenomenon and numerical applications
@ Decay phenomenon and Krylov subspace methods;
o Applications to the (inexact) Arnoldi algorithm;
o Decay phenomenon and rational Krylov subspace methods;

@ Decay phenomenon and linear ODEs.
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Matrix decay phenomenon and its applications

Introduction
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Sparse matrices

@ Sparse matrix: small number of nonzero elements (the
number of nonzero elements is O(n)?);

o “A matrix is sparse if there is an advantage in exploiting its
zeros” [Duff, Erisman, Reid, '86].

60 100 -
o 10 220 3 4 s 6 o 20 4 60 o 10 0 100200300 400
nz=294 nz - 460 nz = 2628

Banded matrix Kronecker sum Graph (Erdos971)
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Localization and matrices

Sparsity does not take into account the elements’ magnitude.

@ There are dense matrices where only a small portion of its
elements are non-negligible in magnitude;

@ The elements with large magnitude are localized in a region of
the matrix (e.g., diagonals);

@ The magnitude usually tends to decay to zero as we move
away from those regions;

@ They are said to be localized, or that they exhibit decay.

o 10 2w 4w 5w
nz= 3600

Refer to: [Benzi, Localization in matrix computation, '16]
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Localization and matrices

Sparsity does not take into account the elements’ magnitude.

@ There are dense matrices where only a small portion of its

elements are non-negligible in magnitude;

o The elements with large magnitude are localized in a region of
the matrix (e.g., diagonals);
The magnitude usually tends to decay to zero as we move
away from those regions;
@ They are said to be localized, or that they exhibit decay.
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Refer to: [Benzi, Localization in matrix computation, '16]
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Matrix functions

o Matrix exponential:

oo =3
@ Matrix resolvent:
ra(A) = (I — @A)}, (1/a & o(A)),
L > ol A (1/a < p(A));
j=0

o Other functions: inverse A~1, square root AL/2,

Refer to: [Higham, Functions of Matrices, '08].
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Matrix function definition

Matrix function
Let A€ C"™" and f be an analytic function on some open Q2 C C.
Then

F(A) = /r £(2) (2l — AV dz,

with I C Q a system of Jordan curves encircling each eigenvalue of
A exactly once, with mathematical positive orientation.

When f is analytic other equivalent definitions exist!. Moreover,
© . © .
f(z):Zasz, f(A):ZajAJ,
j=0 j=0

if both the series converge (|z| < 1, p(A) < 1).

![Higham, Functions of Matrices, '08]
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Matrix decay phenomenon and its applications

Decay characterization and
applications
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Banded matrices and decay - Example

O g
3 1 0 0 10
1 3 1 : 2
A=10 1 0 »
- 1 40
_0 0 1 3_ 50
60
0 10 20 30 40 50 60
nz=178
60 x 60 tridiagonal SPD matrix Sparsity pattern of A
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matrices and decay - Function properties

0 o
Magnitude of A~! elements Magnitude of exp(A) elements
(log scale) (log scale)

Function properties influence the decay behavior (pole vs entire)
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Banded matrices and decay - Band length
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Banded matrices and decay - Spectral properties

[1.0027,4.9973] [0.0027,3.9973] [—0.9973,2.9973]

e
— a0
e 20
oo

exp(A —21)
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An application: matrix exponential approximations

o A, is a sequence of banded matrices of increasing size n;

o f(A,) displays an off-diagonal decay whose rate is
independent of n.

We want to compute exp(A,) by polynomial approximation:

exp(An) = pk(An).

For instance, px can be given in terms of Chebyshev polynomials
Ti(z). As the T are orthogonal polynomials, we get the
recurrences

Ti+1(An) = 2A0Ti(An) — Tk—1(An), k=1,2,....
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An application: matrix exponential approximations

The most expensive operation in the recurrences:
Tir1 =2A,Te(An) — Tk—1(An), k=1,2,....

o A, is banded;

o Tx(An) shows a decay. It can be approximated by a banded
matrix B, x ~ Tk(Ap);

@ The bandwidth of B, is independent from n.

Therefore
An Tk(An) ~ Aan,k7

Note that the cost of performing A,B, « is O(n) as n increases.

For certain sequences of matrices A,, it is possible to derive O(n)
methods for matrix function approximation [Benzi, Razouk, '07].
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Other applications

o Linear systems: Ax = b, with A, b localized. Compute only
the parts of x where the information is localized, e.g., by
Gaussian elimination ([Duff, Erisman, Reid, '86]), Monte Carlo
([Benzi, Evans, Hamilton, Pasini, Slattery, '17]), quadrature ([Golub,
Meurant, '10], [Bonchi, Esfandiar, Gleich, Greif, Lakshmanan, ’12]),

@ Preconditioner construction: e.g., based on banded
approximation of inverse ([Concus, Golub, Meurant, '85]), decay in
the inverse triangular factors ([Benzi, Tuma, '00]), . ..

o Eigenvalue problems: since spectral projectors can be
expressed as matrix functions ([Razouk, '08], [Benzi, Rinelli, '22])

@ Error bound for Krylov subspace approximations: Using the
structure of the Arnoldi upper-Hessenberg matrix ([Ye, '13],
[Wang, Ye, '16], [P., Simoncini, ’19]), -
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Matrix decay phenomenon and its applications

Upper bounds for banded matrices
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Bandwidth 1 and Polynomials

0 o
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Bandwidth 2 and Polynomials
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Banded matrices

Bn(B,7) is the set of banded matrices A € C"*" with upper
bandwidth 8 > 0 and lower bandwidth v > 0, i.e.,

(A)ke=0, forl—k>pork—1{>n.
If Ae Bn(8,v) with 5, # 0, for

_J [(e=K)/p], it k<t
g._{ [(k=0)/~], k="

then
(A™M)e =0, forevery m<E&.
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Banded matrices and decay - Polynomial expansion

If it is possible to expand the matrix function into a series of
polynomials

F(A) = ajpi(A),
j=0

then,
[ee]
F(Ake= Y api(Ae

=€

Assuming |aj| — 0 quick enough, and |pj(A)¢| bounded, then
|f(A)k,| decays to zero as |k — ¢| increases.
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Banded matrices and decay - a-priori bounds

Using the previous observations, one can derive upper bounds in
the form

(F(A))kel < cp*,

where p € (0,1), c > 0 depend on properties of A, f. In the
non-symmetric case, the Field of Values

W(A) ={v Av|v e C",||v|]| =1},
can provide the necessary spectral information.

We now show an a-priori bound for a function of a
(non-Hermitian) matrix based on this approach; see [P. Simoncini,
'19] (no use of the Crouzeix's conjecture), c.f. [Benzi, Boito, '14], [Benzi, '20].
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The a-priori bound

Joint work with V. Simoncini (University of Bologna)
The bound takes the general form:

13
(F(A) el < pl&) <(1£)> |

where p(§) — p > 0, and 7(§) > 1 depends on f and W(A).
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Faber polynomials - Definition

Let © be a continuum with connected complement, ¢ is the
relative conformal map satisfying the following conditions

lim M

z—oo  Z

¢(00) = o0, =d>0.
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Faber polynomials - Definition

Consider the Laurent expansion of ¢:
ap  a
$(z) =dz+ag+ =+ 2 4.
zZ zZ

Then, the nth power of ¢ can be expanded as

(qs(z))”:dz"+af,"_)12"*1+---+a§,”)+%+1—2+....
The Faber polynomial of degree n for the domain Q is defined as
d,(z) =dz" + af,"f)lznf1 +- aé"), for n > 0.
When Q = [—1,1], they are the Chebyshev polynomials.

See [Suetin, '98].
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Properties of Faber polynomials

o If f is analytic on Q then

8

o If the spectrum of A, o(A), is contained in €, then

SN
j=0

o If Q is convex and contains W/(A), then ([Beckermann, '05])

@i (A < 2.
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Bound derivation - ldea

Assume A € B(3,7), ®; define on the domain Q > W(A), then

A)kg_Zfd)(A => f0i(As
Jj=0 Jj=¢

with & = [(¢ — k)/B] for k < £, & = [(k —£)/v] for k > £. Thus

Al <D 161 D5(A) kel <Z|f|||¢ (Al
IE

Jj=¢
S2Z\G\-
j=¢

fi|, we obtain the bound (it depends on f, €, ).
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The bound

Theorem

Let A € Bh(B8,7) with W(A) C Q. Moreover, let ¢ be the
conformal map of €, i be its inverse and G, the set with border
M- ={w : |¢p(w)| = 7}. Assume that, for 7 > 1, f is analytic on

G, and bounded on .. Then
1\ ¢
Syl (7)

For the given f,  and &, 7 must be chosen so to minimize

mexl )] (5 )g

(FA | <22
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Exponential function

Corollary

Let A € Bh(5,7) with W(A) C Q, with Q's boundary a horizontal
ellipse with semi-axes a > b > 0 and center ¢ = ¢; + ic; € C,
c1,c €R. Then for £ > b

3
A < a a+b
<e >k,£ S 2e (e 26 ) , &>b.

A similar bound is derived in a different way in [Wang, Ye, '16].
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Example - 127-th column of exp(A)

A = Toeplitz(—i,i,—2) € C"™", n= 200
Condition number of the eigenvector matrix: 4.0e + 29
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Example - 67-th column of exp(A)

A = Toeplitz(i, 3i, —i, —i) € C"™", n =100
Condition number of the eigenvector matrix 5.5e + 13
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Since z~2 is defined in C*+, I, must be in C*.

Corollary

Let A € B,(8,7) with W(A) C Q c C*. Q's boundary is a
horizontal ellipse with semi-axes a > b > 0 and center ¢ € C.
Then, for any ¢ € R with 0 < ¢ < |¢| — y/a(a + b)

),

|c(1 = e/lcl) + VP = /1) — (@ = PP
o1 —e/lcl) + VAT = /I = (@ — B2P| — (a+b)

< Zme) (55 qz(e))g

el —e

with

p2(e) = ’

1
) T A @ P ea
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Example - 67-th column of A3

A = Toeplitz(i, 7+ 3i,—i, —i) € Bioo(1,2), e = 0.05
Condition number of the eigenvector matrix: 5.5e + 13
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Example - 67-th column of A3

4
3 o
10
2
1
0

o 1 2 3 4 5 & 7 8 3 10 0 10 20 30 40 50 60 70 80 90 100

A = Toeplitz(i,3 + 3i,—i, —i) € Bioo(1,2), e = 0.05
Condition number of the eigenvector matrix: 1.2e 4 24
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Summarizing

@ We presented a family of bounds for the decay of functions of
banded matrices;

@ The bounds depend on the shape of the matrix field of values and
on the domain of analyticity of the function;

@ The better we approximate the field of values, the better the bound.

More details: P., Simoncini, Inexact Arnoldi residual estimates and
decay properties for functions of non-Hermitian matrices, BIT
(2019).
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Matrix decay phenomenon and its applications

Extension to sparse matrices
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Sparse matrices and decay: A graph interpretation

Any graph G = (V, E) is represented by its adjacency matrix A.
Vice versa, any matrix A represents a (weighted) graph.

= =
= N
w
S
(S}

>

I
TS W N =

—

—

V={1,2,...,5}, E={a,b,...,g}

(A™) e = 0, if dist(k,£) > m

dist(k, ) is the geodesic distance from k to /.
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Graphs and Polynomials

1 [*x =* * % % * %k ok
2 * *
3 | x* * * ok
4 * *
5

A A2 A3

EE R
o R S

1B W N

A4
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A-priori bound for sparse matrices

For banded matrices we, generally, have bounds of the form:

(FAdl < € (1)5

Using (A™)k¢ = 0, if dist(k,£) > m, they can be extended to the
sparse case as follows:

1\ dist(k.0)
dse()

[Benzi, Razouk, '07]
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Decay phenomenon and graphs: An example
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Matrix decay phenomenon and its applications

Application to network analysis
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Counting walks in graphs

A walk from k to £ is a path from the node k to the node ¢ that
admits repeated edges (it is said to be closed when k = /).

(A")x., = number of walks of length n from k to £.

1—4:

o length 3: b, c,e

length 4: a,b,c, e
length 6: b,c,d, b, c,e
length 7: b,c,d,b,c,e, g
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Matrix powers and walks

1 J1 1 111 2111
2 1 1 1 11 11
3 |1 1 11 11 11111
4 11 11 11
5

A A2 A3
11321 21
2 /11111
321121
4 11
5

A4
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Tridiagonal matrix

11 2 21 4 5 3 1
111 2 321 5 7 6 31
1 11 1 2 3 21 3 6 7 6 3
1 11 1 2 3 2 1 3 6 7 5
11 1 2 2 1 35 4

A A2 A3

<]

12 18 16 10 4
16 19 16 9 WK\Q
10 16 18 12

7?4 9 12 9
A4

S
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Tridiagonal matrix

11 2 2 1 45 3 1
111 23 2 1 576 3 1
11 1 12321 367 6 3
11 1 1232 13675
11 122 135 4
A A2 A3
9 12 9 4 1
12 18 16 10 4
9 16 19 16 9 M‘/\Q‘/\Q
4 10 16 18 12
1 4 9 12 9 T T T T

A4
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Subgraph centrality: counting closed walks

1 11 11 1
1 1 1 1 1 11
1 1 11 11 1 11 1 1
11 11 11
A A? A3

3] 2 1 2 1
I 1111
2 11 21
11

A4
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Subgraph centrality: counting closed walks

1 11 11 1
1 1 1 11 11
1 1 +]1 1 1 1] 4|1 11 1 1
11 11 11
A A? A3
2 1 2 1
1 1111
+l2 1121 SC(1)=1+1+2+3+...
11

Divergent!
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Subgraph centrality: counting closed walks

1 11 11 1
1 1 1 1 1 11
alf 1 1 taol 11 1 1|+asl1 1 1 1 1f..
11 11 11
A A2 A3

SC(l) =ag+ar+ar+2a3+3as+...
=g+ a1A11 + a2(A)11 + az(A®)11 + (AN + .

= ZO[J'Aj = f(A)l,l
Jj=0

1,1

It is a matrix function when the series converges.
[Estrada, Rodriguez-Velazquez, '05]
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Exponential and resolvent indexes

Usually, the following functions are considered:
oo 1 (o9}
exp(A) = ZEA", ra(A) = Zoa"A” = (I —aA) L.
n=0 n=

Subgraph centrality references (incomplete list)

[Arrigo, Higham, Noferini, Wood, '22] [Estrada, Hatano, Benzi, '12]

[Arrigo, Durastante, '21] [Estrada, '12]

[Benzi, Boito, '20] [Estrada, Higham, '10]

[Arrigo, Higham, '17] [Estrada, Hatano, '08]
[Aprahamian, Higham, Higham, '16] [Newman, Barabasi, Watts, '06]

[Benzi, Klymko, '13] [Estrada, Rodriguez-Veldzquez, '05]
[Benzi, Estrada, Klymko, '13]
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Application: Stability under sparse perturbation

Joint work with F. Tudisco (GSSI Gran Sasso Science Institute).

Consider G = (V, E) with adjacency matrix A. Let us add, remove
or simply modify the edges in the set JE, obtaining

G = (V,E),

with £ ¢ E U SE and with adjacency matrix A = A + JA.
We have derived bounds for

[F(A)ke — F(A+6A) k]

which enlighten the dependency on the distance that separates
either k or ¢ from the nodes touched by the edges in JE.
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o Computing the entries of f(A) is a costly operation.
o Often only the first most important nodes are needed.

o Typically modifying a few marginal edges does not change the
ranking of the most important ones.

@ The distance of important nodes from those with marginal
role is usually large.

If JA is low-rank, efficient techniques for updating f(A) can be
found in [Beckermann, Kressner, Schweitzer (2018)].
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Example: The bridge

1
2

111
112
221
222

o Adding e, the number of walks in the graph significantly

@ The far a node k is from the bridge, the longer the walks

passing through e;

o Therefore, we expect SC(k) to significantly varies only for

nodes close to the bridge.

Stefano Pozza
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Lemma

Let S = {s|(s,t) € E} and T = {t|(s,t) € JE} be respectively
the sets of sources and tips of E, then

(Ao = (A", fork¢ Sand £ ¢ T,

for every n < dg(k,S)+ dg(T,l) =: 6.

Remark: dg(k,S),dg(T,¥) are distances in the original network G.
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Polynomial approximation

If both the matrix and the perturbed matrix functions can be
expanded in the same series of Faber polynomials:

F(A) = fj fid;(A), f(A)= fjf,.¢j(/1),
j=0

Jj=0
then we get

F(Ae = FAe = Y. £(®(A)ke — Di(A)e).
o1

Using the same approach seen for the decay property of banded
matrices, we derived the following bound.
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The bound

Theorem

Let W(A) and W/(A) contained in a convex continuum E with
connected complement whose boundary is I'. Moreover, let ¢ be
the conformal mapping of E, % be its inverse and G, the set with
border ', = {w : |¢p(w)| < 7}. Let us assume that 7 > 1, f is
analytic in G and f is bounded on .. Then

(ra-18), | <022 (2)

with § = dg(k,S) + dg(T,¥¢) and

pr(F) = / ()] dz
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Corollaries

Let 0 = dg(k,S) + de(T, /). If the boundary of Q is a horizontal
ellipse with semi-axes a > b > 0 and center ¢, then for § > b—1

o+1
~ 46 p(§ a+ bel)
(o) ~ op(d)) | < ) ( ,

p(5) — (a+ b)/(G+ 1)\ 4+ 1p(0)

with g(t) =1+ t2+t\/t2+—2b and p(t) ~ 2.
Moreover, for 0 < e < a1 —c| —aand § >0

. 4 1 at+b 1\°"
‘(ra(A) N ra(A)) ke‘ = 1— —atb g(\al —c| - 6> ’
" (o T=cl-9)p: Pe

where p. < 2.
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Two circles: exponential-centrality
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Normalized Pajek/Erdos971: exponential-centrality

We added all the missing edges between the 10 nodes with
smallest centrality exp(A)xk

]
< 10°
&
5 o
| Q.
[eH
£ 4010t |
3
2,
x
]
10-20 1 1 1 1
100 200 300 400
k
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London train connections

The nodes are the train stations, and the edges are the existing
routes between them (overground, underground, DLR, etc.)
[De Domenico, Solé-Ribalta, Gdmez, Arenas, '14].
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London train network 1

We added all the missing edges between the 5 nodes with smallest
centrality exp(A)xk
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London train network 1: Exponential-centrality

| exp(A)x — exp(A) x|

1020

Stefano Pozza
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London train network 2

We modified the last 5 and 15 nodes changing their weights.
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London train network 2: Exponential-centrality

1010 1 1010
=
? 100 100
|
é 10710 10-10
B
710'20 10720

300
Last 5 nodes. Last 15 nodes.
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@ The bounds show that the variation of f(A)x, decays
exponentially with respect to d¢(k,S) + dg(T. /), the sum of
the distances that separates k and ¢ from the set of nodes
touched by the perturbed edges in S, T.

o The bounds depend on W/(A), W(A) and we gave strategies
for their estimation.

o We also proposed a strategy that allows to compute the
distances between nodes simultaneously with the computation
of the entries of f(A) by Lanczos algorithm.

More details: P., Tudisco, On the stability of network indices
defined by means of matrix functions, SIMAX (2018).
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Conclusions

o We have introduced the decay phenomenon;

o We have discussed its characterization in terms of matrix and
function properties;

o We have shown how to predict it;

o We have seen an application to network analysis.

Tomorrow: Decay phenomenon and ...
o (Inexact) Arnoldi's method;
o Rational Krylov subspace method;

@ A new approach for linear ODEs.
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Conclusions

o We have introduced the decay phenomenon;

o We have discussed its characterization in terms of matrix and
function properties;

o We have shown how to predict it;

o We have seen an application to network analysis.

Tomorrow: Decay phenomenon and ...
o (Inexact) Arnoldi's method;
o Rational Krylov subspace method;

@ A new approach for linear ODEs.

Thank you for your attention!
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January 25, 9:00. Decay phenomenon and sparse matrices

Introduction;

@ Decay characterization and applications;
@ Upper bounds for banded matrices;

@ Extension to sparse matrices;
°

Application to network analysis.

January 26, 9:00. Decay phenomenon and numerical applications
@ Decay phenomenon and Krylov subspace methods;
o Applications to the (inexact) Arnoldi algorithm;
o Decay phenomenon and rational Krylov subspace methods;

o Decay phenomenon and linear ODEs.
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Matrix decay phenomenon and its applications

Decay phenomenon
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Banded matrices and decay - Example

O g
3 1 0 0 10
1 3 1 2
A=10 1 0 »
- 1 40
_0 0 1 3_ 50
60
0 10 20 30 40 50 60
nz=178
60 x 60 tridiagonal SPD matrix Sparsity pattern of A
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matrices and decay - Function properties

0 o
Magnitude of A~! elements Magnitude of exp(A) elements
(log scale) (log scale)

Function properties influence the decay behavior (pole vs entire)
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Banded matrices and decay - Band length
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Banded matrices and decay - Spectral properties

[1.0027,4.9973] [0.0027,3.9973] [—0.9973,2.9973]

e
— a0
e 20
oo

exp(A —21)
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Banded matrices and decay - A-priori bounds

By expanding a matrix function into a series of polynomials
o0
F(A) = api(A),
j=0

we derived upper bounds in the form

|(F(A)) kel < cpl*,

where p € (0,1),c > 0 depend on properties of A, f (and p can
depend on |k — ¢|). To compute the a-priori bound we need to
approximate the Field of Values

W(A) = {v'Av|v e C" |lv[]| = 1}.
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Matrix decay phenomenon and its applications

Decay phenomenon and Krylov
subspace methods
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Model reduction

A possible way to approximate f(A)v is by projecting the problem
onto a small subspace, such as the Krylov subspace:

Pm(A, v) :=span{v,Av,... ,Am1 v}.
Given a basis Up, of Pp(A, v), we can define the reduced matrix
Tm = U,AUpn.
Then we have the model reduction:
F(AVv = Unf(Th)w, w=U,v.
If m is small, computing f(T,,)w is computationally cheaper.

E.g., [Higham, Functions of Matrices, '08]
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Arnoldi's method

Given a matrix A € RVXN and a vector v # 0, Arnoldi's method
produces the orthogonal matrix

Un = [u1, . . .,um],
forming a basis of Pp(A, v).

Starting with u; = v/||v||, Arnoldi's method is a Gram-Schmidt
orthogonalization process defined by the recurrences

J
l”_,'+1JUj+1:AUj—Zt,"ju,', j=1...,m
i=1
*
tij = i Ay, tiaaj = [lujal.
E.g., [Saad, Iterative Methods for Sparse Linear Systems, '03]
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Arnoldi's method

The recurrences have the matrix form:
-
AUm == Um 7—m + tm+1,mum+lema

with T, the m x m upper Hessenberg matrix with entries t;; (en,
the mth vector of the canonical basis). By orthogonality we get

T = USA Up.

The matrix T, plays two roles in the algorithm:
o It represents the orthogonalization process (coefficients t; ;);

o It represents the action of A in the Krylov subspace Pn,(A, v),
ie.,
UnTmU,, = UnU,,AULU,,.
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Hessenberg matrix and decay

T can be used for matrix-function approximation
f(A)v = Unf(Tm)er,

f(A) = A~1 = FOM.

/60
-50
ol //40
60 L 20
0 10 2 30 40 50 60 0 T/
nz = 1889 [
Sparsity pattern of Tgg exp(Teo) (log scale)
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Decay bounds

It is possible to derive a-priori decay bound for f( Tp,).
o We know the band length;
o We know f;

@ We can derive the necessary spectral information from the
input matrix since W (T,,) € W(A).

Applications: Decay bounds can be used, e.g., for:
o Devise new relaxed approaches (inexact Arnoldi);

@ Stopping criteria for iterative solvers in matrix function
evaluations and matrix equation solving.

E.g., [Giittel, Schweitzer,'21], [Kiirschner, Freitag,'20], [P. , Simoncini,'19].
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Matrix function approximation

Joint work with V. Simoncini (University of Bologna)
Let y(x) = f(xA)v be the solution to the differential equation
yD(x) = Ay(x), y(0)=v, x>0,
with y(?) the dth derivative. Consider the approximation
Y(X) ® Ym(x) = Unf(xTm) e1.
The differential equation residual is given by:

rm(X) = Aym(x) - yfg)(x) =Umt1tm+1,m e;f(XTm) €e1.
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Residual bound

For simplicity, let us fix x =1,
o |elf(Tm)ei1| decays as m increases;
o We can bound |e/ f(Tm)ei1| a-priori, and hence

]| < [tms1,m|lemf (Tm) €1

A = pde225f (Matrix Market), f(A) =e A, v=(1,...,1)" /y/n.
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Matrix decay phenomenon and its applications

Applications to the inexact
Arnoldi method
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Inexact Arnoldi

Joint work with V. Simoncini (University of Bologna)

In inexact Arnoldi, A is assumed to be not known exactly. Then,
the matrix-vector product can only be approximated:

Aug = Auy + wy,
with accuracy ||wg|| < e. Then the the original recurrences become
(A+EVUm = UnTm + tmst.mUmyrel, E=[wy,...,wy,]U*
We can define the quantities (x = 1)

(d)

tm=Ayn —Y and  p, = |tm+17meLf(Tm)e1\.

However, r,, cannot be computed exactly!
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A strategy for the inexact Arnoldi

Observe that
o Tp, is upper-Hessenberg;

o Assuming e small enough, W(A + E) is not much larger than
W(A) since W(A+ E) Cc W(A)+ W(E).

Therefore, by using the same bound seen before, we expect

Pm = |tm+1,merzf( Tm)e1] to decay.

Since
[¥mll < [Ivmll = pml| + pm,

if ||[rml|| — pm] is small, then ||ry,|| decays too.
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A strategy for the inexact Arnoldi method

Note that ([Simoncini, '05], [Simoncini, Szyld, '03]),

m

lemll = pml < [[Wa, - W] (tHm)er ]| < >yl le] F(Ton)esl,
j=1

Therefore, |||rm|| — pm| is small as long as

lwjl| [e] F( Tim)er| < toll/m

As a consequence,
@ we can relax the accuracy of each iteration €; = ||w;][;

@ ¢; can be set a-priori using the bound for \eij(Tm)ell.

The smaller is p, the larger is the accuracy ¢;.
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A

Example - e™"'v

o ||rj|| — constant accuracy strategy, €; = toll/m, for every j;

o |[rj|| — previously presented strategy for ;.

35

Matrix pde225 (Matrix Market), v = (1,...,1)7 /y/n.

Stefano Pozza Matrix decay phenomenon and its applications Il 21 /50



Example - exp(—VA)v

A = Toeplitz(—1,1,3,0.1) € Bago(1,2), v=(1,...,1)7 /y/n.
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Example

More details: S. Pozza, V. Simoncini, Decay bounds for functions
of banded non-Hermitian matrices, BIT, 2019.
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Matrix decay phenomenon and its applications

Decay phenomenon and rational
Krylov subspace methods
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Rational Krylov Subspace Method

Setting o = [01,...,0m—1] with g; & A(A), the rational Krylov
subspace is defined as

m—1
Km(A,v,0):=span{ v,(A—a1l) 1 v,..., H (A—ail) v
j=1
RKSM produces the orthogonal matrix Vp,, = [v1, ..., vy] basis of

Km(A,v,0). RKSM is a Gram-Schmidt orthogonalization:
hj+1JVj+1:(A—UJ Zh,",v,, j:].,...,m,

hij=vi(A—o) "vj,  hiyrj=Ilvjall.
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RKSM matrices

RKSM recurrences have the matrix form:
AViHp = VinKim — hms1,m(A — oml)Vmi1en,
with Hy, the Hessenberg matrix with entries h; ;, and
Km = (I + Hndiag(o1,...,0m));

see, e.g., [Ruhe, '94], [Giittel, '13], [Giittel, Knizhnerman, '13].
The information about the orthogonalization are carried by Hp,.
The reduced-order matrix is defined as

Im = VAV, = K Hpl = hs 1. m V(A — ol ) Vi) HY

m m

which is the projection of A onto (A, v, o).
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Reduced-order matrix applications

RKSM can be used for the approximation of matrix function
f(Alv = Viuf(Jm)er;

Another application is the Lyapunov matrix equation. See, e.g.,
[Guttel, '13] [Knizhnerman, Simoncini,'11], [Simoncini,'15-'16].
Jm is generally full. Nevertheless, Jp,, and f(Jn,) exhibit a decay.

00 0 0

Jso exp(Jso)

See also [Fasino, '05], semiseparable + diag
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The hidden sparsity structure of J,,

Given the rational function

(0, . q;(x)
= Gy e

with t > 1 and gj(x) a polynomial of degree at most j. If the
indexes k, /¢ are such that k > t + 2 and £ < t, then

(s,j(t)(Jm))k,e —0, j=1,... k—t—1.

@ The hidden sparsity structure of J,, is a consequence of V,
orthogonality.

@ In Arnoldi's method, the connection between the
orthogonalization process and the sparsity pattern of T, is
evident.
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The hidden sparsity structure of J,,

j=3, t=4
0 =5 0
o
2F e 2
.
4t e 4
o
6f e 6
o
8 8
10 10
12 12
14 14
16 16
18 18
20 20
0 5 10 15 20 0 5 10 15 20

nz =296 nz = 268

Sparsity pattern of sj(t)(Jm) for Jp and Hermitian matrix A.
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A-priori decay bound

To derive a-priori decay bounds for f(Jp,) we exploit:
@ The hidden sparsity structure of Jp;

o Rational function approximation. Specifically, rational
Faber-Dzhrbashyan functions M;, ([Dzhrbashyan,’57], [Suetin, 98],
[Beckermann, Reichel,'09]);

@ The domain of analyticity of f;
o Information on the field of values of A since W(J,) C W(A).

Our results are based on Faber-Dzhrbashyan expansions:

F(Um) = 3 M (Jnm)-
j=0

See also [Druskin, Knizhnerman, Simoncini, '11], [Knizhnerman, Simoncini, '11]
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Field of values and conformal maps

Let Q O W(A) be a convex compact set and let ¢ and ¢ be the
related conformal map and its inverse, s.t. ¢(oc0) = oo, and

lim; 00 ¢(2)/z=d > 0.
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Upper bounds

Assume 7 > 1, k — £ > 1, and f analytic on Q.. Then

T+’¢Ut
f(J <37 f || = B(k,?).

Setting the coefficients

o = i f(w(z)) k2 z — ¢(Ut) ¢(Ut) _1 j—k+0+2 i
1_2”"/| gmz—lw(at)r( ) dz.

and a positive integer s, we have the following more refined bound

s—1

B(k, ¢

[F(m)icel <3 Z ko] + (75)
Jj=0
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o B(k, /) depends on the parameter T;
o For each k,/, we can choose a nearly optimal T;

o For f(A\) = A, the bound shows that J,, elements decays in
the matrix lower part (wannabe Hessenberg);

@ The better Q approximate W/(A) the better is the bound;
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Numerical tests: Symmetric case, 2D Laplacian

2
105 10
0000
(%00,
100 « 000,
*+H 00000,
100 i 00 107 - 0%,
L2 %oo b, X 000
e o ++ 00,
e oy 104 S
105 H++ %w 6 ” XX
e %o, 10 o
+
T Oocoo 8 he
+ oo 10
o0 i 4t
10° + oy hes
++ 10710
-y +,
o ++
H
+ 1072 +
‘0-15 +t
4
1071 -
1020 . . . . 1078
0 10 20 30 40 50 0 10 20 30 40
(Jso0):2| (+), B(k,£) (o) |(exp(Js0)): 2| (+), B(k,£) (),

refined bound (+)

A=L®l+1®L, L=tridiag(—1,2,—1), n = 1600, v random,
A(A) C [-7.9883,—0.0117].
(+): coefficients a;j computed by MatLab integral , s < 27,
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Numerical tests: Symmetric case

104 [ 10710 +
R o +++++
E R
10° 10712
0 10 20 30 40 50 60 0 10 20 30 40 50 60
J Joo — 100i 1)1
60):,2 60 5,2

flowmeterO , Oberwolfach Model Reduction Benchmark
Collection (dynamical systems). Symm., n = 9669,
A(A) C [-2.08-10%,-1.31-107%]. s < 53.
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Numerical tests: Non-symmetric case

-10 -10
10 + 10

hey . e
- + X
tey hy
10°7° e 10718 +
++, £y
+
4 - tq
o
N
‘0—20 10 -20
10 20 30 40 50 0 10 20 30 40 50
i1)71). el
|(Jeo): 2| ((Jeo — 100i 1)77). 2

A is obtained from the centered finite difference discretization of
L(u) = —Au+ 35u, + 35uy, on the unit square, with homogeneous
Dirichlet boundary conditions. Non-symmetric, n = 784. s < 20.
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Lyapunov equation

Another application is the Lyapunov matrix equation
AX + XAH = ccM.
that can be approximated by solving the reduced-order equation
InYm+ Yt =ee], X=V,Y, VI
+ioco

(Wl — Jpm) terer(wl 4 Jm)~t dw.

—ioo

_
27

Ym decay can be used to estimate the residual.

Ym
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Numerical tests: Non-symmetric

8 - 4 2 0 0 %0
Field of values of A (yellow | Y50/, solution of the
area), eigenvalues of A (x) reduced-order Lyapunov

equation (log scale)
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Numerical tests: Y,, Lyapunov non-symmetric eq.

10°
0y [0
o Bee)
00 0% “on,
+ [e9) + o,
e % %
++ Ty

L 5] o [eS)

108 i, © 10° " ©
o
o . R
+ +
* © + ©
1070 + 10710 *
e % + “©
+, +
+ Cop + O
s et © 5 t ©
10 Raaanst s o 10 +
] + . 9
+ +++*+ H#SO‘W Sty
%, * 558
(e} + 0
1020 e} 1020 [e)
% %o
10728 1025
0 10 20 30 40 50 0 10 20 30 40 50

|(Y50)- 3] diag(| Ysol)
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o The matrix T, = U;,AUp, from Arnoldi's method is
upper-Hessenberg, hence characterized by a decay
phenomenon.

o In RKSM, the matrix Jp, = VAV, is generally a full matrix.

@ Despite having lost the band structure, J,, is still
characterized by a decay phenomenon in its lower part.

@ We explained and described this decay phenomenon by
deriving effective a-priori bounds.

o We derived similar bounds for Lyapunov matrix equations.

More details: P., Simoncini, Functions of rational Krylov space matrices
and their decay properties, Numerische Mathematik, 2021.
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Matrix decay phenomenon and its applications

Decay phenomenon and linear ODEs
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Non-autonomous linear ODEs

Consider the following ordinary differential equation

ey (t) = F(t)y(t), y(0)=1, telo1],

with 7(t) a given analytic function over [0, 1].
@ We present a new approach for the solution of linear ODEs.

@ The new method is meant for large systems of
non-autonomous linear ODEs.

o For the sake of simplicity, here, we consider the simpler case
where the time-dependent coefficient f(t) € C.

Joint work with N. Van Buggenhout (Charles University) and
P-L. Giscard (ULCO, Calais).
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ODE solution expansion

Consider the (shifted) normalized Legendre polynomials

po(t), p1(t), p2(t),. .., i.e., polynomials s.t.
1 0, ifk#/
dr =<
| wtren(rer {1, T

The solution y(t) is an analytic function over [0, 1], as such, we
can expand it into the series

y(t) = Z uipj(t), te€[0,1].

Jj=0
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ODE solution expansion

Let us define the truncated expansion
Ym(t) : Z uipi(t), tel0,1].

Then the error is bounded by

max y(6) < ym(B) € 3 Juyl YT

t€[0,1] e

o As y(t) is analytic, the coefficients |u;| asymptotically
converge to zero faster than geometric (decay).

e For m large enough, |umy1| is a good approximation of the
truncation error.
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ODE solution by *-product

The new approach is based on the so-called *x-product. Given two
distributions gi(t,s), g2(t, s) from a certain class,

+oo
(61+8) (t,5) = / g1(t,7)ga(r, ) dr.

—0o0

Then, the ODE solution can be expressed as [P., Giscard, '22]

y() = (©(t = )% (L.~ F(1)8(t — 5))™) (£,0),

with
1, t>s,
@(t—s)—{ 0, t<s

(Replacing f with a matrix, we can solve an ODE system.)

Stefano Pozza Matrix decay phenomenon and its applications Il 44 /50



*-product discretization

By using the Legendre polynomials, the x-product expression can
be discretized. This leads to transforming the x-product algebra
into a matrix algebra.

f(t)o(t —s) Frm
r(t,s) = p(t,s)xq(t,s) discr. Rp = PnQm
Ptq —  Pm+Qn

s =0(t—5) Im, identity matrix
p(t,s) Pt
(L —p)~*(t,s) (Im — Pm)~

[P., Van Buggenhout, '22]
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ODE solution by discretized *-product

Then, the x-solution of the ODEs can also be discretized.
y() = (©(t = )+ (1. = F(1)©(t = 5)) ™) (£,0)

J discr.

un =~ Hm(/m - m)_lel

u1 i * 7 [ * * * 1701

u> * * * * * * 0

* * * * * 0

Uy - * * * * * * 0

us * KR * * * * - 0
decay T decay T banded by truncation
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~

Example- f(t) = cos(4t)

0 0

20 20

40 40
60 T 60
80 80

100 100

20 40 60 80
J j
F1o0 Hioo(hoo — Fio0) ™!

Sparsity pattern of the matrices after truncation (to/ = 2e — 16)
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~

Example- f(t) = cos(4t)

109

E 10710

10720 ‘ ‘

Legendre coefficients of the solution u(t); computed by the
*-approach (x), computed via chebfun knowing that
u(t) = exp(cos(4t) — 1).
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@ There is a clear relation between the decay of the resolvent of
the discretized matrix and the decay of the Legendre
coefficients ug, uy ... ;

o We need to determined m a-priori. This means that we need
to know how many ug, u; ... are needed before solving the
linear system;

o A-priori bound on the decay of (I, — F)™?

estimate for m.

may provide an

More details:

@ P., Van Buggenhout, A x-product solver with spectral accuracy for
non-autonomous ordinary differential equations, PAMM, '23.

@ P., Van Buggenhout, The x-product approach for linear ODEs: A
numerical study of the scalar case, PAMM, '23.
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Conclusion

The decay phenomenon appears in:

Network /graph analysis;
Krylov subspace methods (Hessenberg matrix);

Rational Krylov subspace methods (hidden structure);

Legendre polynomial expansion of and ODE solution (from a
matrix point of view);

o Many other applications.

Its understanding requires combining tools from:
@ Polynomial and rational approximation;
o Linear algebra;

o Graph Theory.
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Conclusion

The decay phenomenon appears in:

Network /graph analysis;
Krylov subspace methods (Hessenberg matrix);

Rational Krylov subspace methods (hidden structure);

Legendre polynomial expansion of and ODE solution (from a
matrix point of view);

o Many other applications.

Its understanding requires combining tools from:
@ Polynomial and rational approximation;
o Linear algebra;

o Graph Theory.

Thank you for your attention!
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