Discrete Green's operator preconditioning: Theory and applications

Martin Ladecký Ivana Pultarová Jan Zeman

Department of Mathematics
Faculty of Civil Engineering
Czech Technical University in Prague

SNA' 23
23-27 January 2023

Table of contents

Motivation

```
Introduction
```

Theory: Eigenvalues bounds
Scalar elliptic problems
Elasticity problems
Generalization

Applications: Computation homogenization
 Fourier-Galerkin discretization
 Finite element discretization

Conclusions

Two-scale material analysis

Computational demands

Time consumption

Adopted from: A variational fast Fourier transform method for phase-transforming materials," by A. Cruzado et al.
Modelling and Simulation in Materials Science and Engineering (2021). Solved using Abaqus FEA software suite (formerly ABAQUS)

Grid size independence

The basic scheme

Mécanique des solides/Mechanics of Solids

A fast numerical method for computing the linear and nonlinear mechanical properties of composites

Hervé Moulinec and Pierre Suquet

Abstract - This Note is devoted to a new iterative algorithm to compute the local and overall response of a composite from images of its (complex) microstructure. The elastic problem for a heterogeneous material is formulated with the help of a homogeneous reference medium and written under the form of a periodic Lippman-Schwinger equation. Using the fact that the Green's function of the pertinent operator is known explicitely in Fourier space, this equation is solved iteratively.

CTU
czech technich UNIVERSITY
IN PRACUE

Table of contents

Motivation
Introduction
Theory: Eigenvalues bounds
Scalar elliptic problems
Elasticity problems
Generalization
\section*{Applications: Computation homogenization

Fourier-Galerkin discretization

Finite element discretization}

Conclusions

Model problem

- elliptic problem

$$
\begin{array}{rlr}
-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) & =f(\boldsymbol{x}) & \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x}) & =0 \quad \boldsymbol{x} \in \partial \Omega
\end{array}
$$

- weak form
- approximation

Model problem

- elliptic problem

$$
\begin{array}{rlrl}
-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) & =f(\boldsymbol{x}) & \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x}) & =0 & \boldsymbol{x} \in \partial \Omega
\end{array}
$$

- weak form

$$
\int_{\Omega} \nabla v(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega} v(\boldsymbol{x})^{\top} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad v \in \mathcal{V}
$$

- approximation

Model problem

- elliptic problem

$$
\begin{array}{rlrl}
-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) & =f(\boldsymbol{x}) & \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x}) & =0 & \boldsymbol{x} \in \partial \Omega
\end{array}
$$

- weak form

$$
\int_{\Omega} \nabla v(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\Omega} v(\boldsymbol{x})^{\top} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \quad v \in \mathcal{V}
$$

- approximation

$$
u(\boldsymbol{x}) \approx u^{N}(\boldsymbol{x})=\sum_{i=1}^{N} u^{N}\left(\boldsymbol{x}_{i}^{\mathrm{n}}\right) \varphi_{i}(\boldsymbol{x})
$$

System of linear equations

$$
\mathbf{K u}=\mathbf{b}
$$

- linear system matrix

$$
\mathbf{K}[j, i]=\int_{\Omega} \nabla \varphi_{j}(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \nabla \varphi_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

- unknown

$$
\mathbf{u}[i]=u^{N}\left(\boldsymbol{x}_{i}^{\mathrm{n}}\right)
$$

- right-hand side

$$
\mathbf{b}[j]=\int_{\Omega} \varphi_{j}(\boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

Preconditioning

- preconditioned system

$$
\mathbf{M}^{-1} \mathbf{K} \mathbf{u}=\mathbf{M}^{-1} \mathbf{b}
$$

- preconditioner

$$
\mathbf{M}^{-1} \mathbf{K} \approx \mathbf{I}
$$

- symmetric form

$$
\mathbf{M}^{-1 / 2} \mathbf{K M}^{-1 / 2} \mathbf{z}=\mathbf{M}^{-1 / 2} \mathbf{b}, \quad \mathbf{z}=\mathbf{M}^{1 / 2} \mathbf{u}
$$

Preconditioning approaches

- diagonal scaling or Jacobi

$$
\mathbf{M}=\operatorname{diag}(\mathbf{K})
$$

- incomplete Cholesky or LU factorization

$$
\mathrm{M} \approx \mathrm{LL}^{\top}
$$

- operator (Laplace, discrete Green's) preconditioning

$$
\mathbf{M}^{-1}=\left[\begin{array}{ccc}
\mathbf{K}_{1,1}^{-1} & & \mathbf{0} \\
& \ddots & \\
\mathbf{0} & & \mathbf{K}_{N, N}^{-1}
\end{array}\right]
$$

$$
\mathbf{L}^{\top}=\left(\begin{array}{ccccc}
\times & \times & 0 & 0 & \times \\
& \times & \times & \times & 0 \\
& 0 & \times & \times & 0 \\
& \mathbf{0} & & \times & \times \\
& & & & \times
\end{array}\right)
$$

Discrete Green's operator preconditioning

- original problem

$$
\mathbf{K}=\int_{\Omega} \nabla v(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

- reference problem

$$
\mathbf{K}^{\mathrm{ref}}=\int_{\Omega} \nabla v(\boldsymbol{x})^{\top} \mathbf{A}^{\mathrm{ref}}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

- discrete Green's (Laplace) operator preconditioned linear system

$$
\left(\mathbf{K}^{\mathrm{ref}}\right)^{-1} \mathbf{K} \mathbf{u}=\left(\mathbf{K}^{\mathrm{ref}}\right)^{-1} \mathbf{b}
$$

Example 1: Setting

- original problem

$$
\begin{gathered}
-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x})=0 \\
\mathbf{A}(\boldsymbol{x})=161.45\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\boldsymbol{x} \in \Omega_{1,3} \\
\mathbf{A}(\boldsymbol{x})=1\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\boldsymbol{x} \in \Omega_{2,4}
\end{gathered}
$$

- reference problem

$$
-\nabla \cdot I \nabla u(\boldsymbol{x})=0 \quad \boldsymbol{x} \in \Omega
$$

Adopted from: Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator," by T. Gergelits et al.

Example 1: Mesh and solution

Adapted from: Convergence of Adaptive Finite Element Methods, by P. Morin, et al.

Example 1: Convergence

- condition number

$$
\kappa(\mathbf{K})=\lambda_{N} / \lambda_{1}
$$

- bound

- condition numbers

```
\kappa
klaplace }\approx16
```

J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal., 4 (1967), pp. 10-26.

16 / 67 Martin Ladecký: Discrete Green's operator preconditioning: Theory and applications

Example 1: Convergence

- condition number

$$
\kappa(\mathbf{K})=\lambda_{N} / \lambda_{1}
$$

- bound

$$
\frac{\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{\mathbf{K}}}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\mathbf{K}}} \leq 2\left(\frac{\sqrt{\kappa(\mathbf{K})}-1}{\sqrt{\kappa(\mathbf{K})}+1}\right)^{k}
$$

- condition numbers

```
\kappa
Klaplace }\approx16
```

J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal., 4 (1967), pp. 10-26.

Example 1: Convergence

- condition number

$$
\kappa(\mathbf{K})=\lambda_{N} / \lambda_{1}
$$

- bound

$$
\frac{\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{\mathbf{K}}}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\mathbf{K}}} \leq 2\left(\frac{\sqrt{\kappa(\mathbf{K})}-1}{\sqrt{\kappa(\mathbf{K})}+1}\right)^{k}
$$

- condition numbers

$$
\begin{aligned}
& \kappa_{\mathrm{ICHOL}} \approx 16 \\
& \kappa_{\text {Laplace }} \approx 161
\end{aligned}
$$

J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal., 4 (1967), pp. 10-26.

Example 1: Convergence

Adopted from: Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator," by T. Gergelits et al.

Example 1: Convergence

Energy norm of the error

- rounding errors (finite precision arithmetic)

Energy norm of the error

$$
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{\mathbf{K}}^{2}=\left\|\mathbf{r}_{0}\right\|^{2} \sum_{l=1}^{N} \omega_{l} \frac{\left(\varphi_{k}^{C G}\left(\lambda_{l}\right)\right)^{2}}{\lambda_{l}}, \quad k=1,2, \ldots
$$

- first residual (right-hand side, initial guess)

$$
\begin{array}{r}
\mathbf{r}_{0}=\mathbf{b}-\mathbf{K} \mathbf{x}_{0} \\
\omega_{l}=\left(\mathbf{r}_{0}, \phi_{l}\right)
\end{array}
$$

- distribution of eigenvalues λ_{l}

- rounding errors (finite precision arithmetic)

Energy norm of the error

$$
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{\mathbf{K}}^{2}=\left\|\mathbf{r}_{0}\right\|^{2} \sum_{l=1}^{N} \omega_{l} \frac{\left(\varphi_{k}^{C G}\left(\lambda_{l}\right)\right)^{2}}{\lambda_{l}}, \quad k=1,2, \ldots
$$

- first residual (right-hand side, initial guess)

$$
\begin{array}{r}
\mathbf{r}_{0}=\mathbf{b}-\mathbf{K} \mathbf{x}_{0} \\
\omega_{l}=\left(\mathbf{r}_{0}, \phi_{l}\right)
\end{array}
$$

- distribution of eigenvalues λ_{l}

- rounding errors (finite precision arithmetic)

Energy norm of the error

$$
\left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{\mathbf{K}}^{2}=\left\|\mathbf{r}_{0}\right\|^{2} \sum_{l=1}^{N} \omega_{l} \frac{\left(\varphi_{k}^{C G}\left(\lambda_{l}\right)\right)^{2}}{\lambda_{l}}, \quad k=1,2, \ldots
$$

- first residual (right-hand side, initial guess)

$$
\begin{gathered}
\mathbf{r}_{0}=\mathbf{b}-\mathbf{K} \mathbf{x}_{0} \\
\omega_{l}=\left(\mathbf{r}_{0}, \phi_{l}\right)
\end{gathered}
$$

- distribution of eigenvalues λ_{l}

- rounding errors (finite precision arithmetic)

Energy norm of the error

$$
\begin{aligned}
& \left\|\mathbf{x}-\mathbf{x}_{k}\right\|_{\mathbf{K}}^{2}=\left\|\mathbf{r}_{0}\right\|^{2} \sum_{l=1}^{N} \omega_{l} \frac{\left(\varphi_{k}^{C G}\left(\lambda_{l}\right)\right)^{2}}{\lambda_{l}}, \quad k=1,2, \ldots \\
& \text { - first residual (right-hand side, initial guess) } \\
& \text { - distribution of eigenvalues } \lambda_{l}
\end{aligned}
$$

- rounding errors (finite precision arithmetic)

Table of contents

Motivation
Introduction
Theory: Eigenvalues bounds
Scalar elliptic problems
Elasticity problems
Generalization
\section*{Applications: Computation homogenization

Fourier-Galerkin discretization

Finite element discretization}

Conclusions

Literature

Nielsen, Tveito, Hackbusch

2009 Preconditioning by inverting the Laplacian; an analysis of the eigenvalues

Gergelits, Mardal, Nielsen, Strakoš

2019 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator.
2020 Generalized spectrum of second order differential operators
2022 Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning

Ladecký, Pultarová, Zeman
2020 Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method
2021 Two-sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems

Generalized eigenvalue problem

- linear system matrix

K

- eigenvalue problem

$$
\mathbf{K} \phi_{k}=\lambda_{k} \phi_{k}, \quad k=1, \ldots, N
$$

- preconditioned linear system matrix

$$
\left(\mathbf{K}^{\text {ref }}\right)^{-1} \mathbf{K}
$$

- generalized eigenvalue problem

$$
\mathbf{K} \phi_{k}=\lambda_{k} \mathbf{K}^{\text {ref }} \phi_{k}, \quad k=1, \ldots, N
$$

Eigenvalue bounds

- for every function φ_{k} having its support inside the patch \mathcal{P}_{k}

$$
\begin{array}{r}
\lambda_{k}^{\mathrm{L}}=\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{esss} \inf } \lambda_{\text {min }}\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \\
\lambda_{k}^{\mathrm{U}}=\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\mathrm{ess} \sup } \lambda_{\text {max }}\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
\end{array}
$$

- sort the two series non-decreasingly,

$$
\begin{aligned}
&\left\{\lambda_{1}^{\mathrm{L}}, \lambda_{2}^{\mathrm{L}}, \ldots, \lambda_{N}^{\mathrm{L}}\right\} \rightarrow \lambda_{r(1)}^{L} \leq \lambda_{r(2)}^{L} \leq \cdots \leq \lambda_{r(N)}^{L} \\
&\left\{\lambda_{1}^{\mathrm{U}}, \lambda_{2}^{\mathrm{U}}, \ldots, \lambda_{N}^{\mathrm{U}}\right\} \rightarrow \lambda_{s(1)}^{U} \leq \lambda_{s(2)}^{U} \leq \cdots \leq \lambda_{s(N)}^{U}
\end{aligned}
$$

Supports of φ_{i} and φ_{j}.

Generalized Rayleigh quotient bounds

Let $\mathbf{A}(\boldsymbol{x}), \mathbf{A}^{\text {ref }}(\boldsymbol{x}) \in \mathbb{R}^{d \times d}$ be symmetric positive definite, then constants $0<c_{1} \leq c_{2}<\infty$ bound the generalised Rayleigh quotient

$$
\begin{equation*}
c_{1} \leq \frac{\boldsymbol{w}^{T} \mathbf{A}(\boldsymbol{x}) \boldsymbol{w}}{\boldsymbol{w}^{T} \mathbf{A}^{\text {ref }}(\boldsymbol{x}) \boldsymbol{w}} \leq c_{2}, \quad \boldsymbol{x} \in \Omega, \text { and } \boldsymbol{w} \in \mathbb{R}^{d}, \boldsymbol{w} \neq 0 . \tag{1}
\end{equation*}
$$

Then for $u \in H_{0}^{1}(\Omega)$, by setting $\boldsymbol{w}=\nabla u$ and integrating over Ω, we get

$$
c_{1} \leq \frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \mathrm{~d} \boldsymbol{x}}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\text {ref }} \nabla u \mathrm{~d} \boldsymbol{x}} \leq c_{2} .
$$

Using $u=\sum_{i=1}^{N} \mathrm{v}_{i} \varphi_{i}$, we get

$$
\begin{equation*}
c_{1} \leq \frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \mathrm{~d} \boldsymbol{x}}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\text {ref }} \nabla u \mathrm{~d} \boldsymbol{x}}=\frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}} \leq c_{2}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq \mathbf{0} . \tag{2}
\end{equation*}
$$

Courant-Fischer min-max theorem*

If $\mathbf{K}, \mathbf{K}^{\text {ref }} \in \mathbb{R}^{N \times N}$ are symmetric positive definite, then

$$
\lambda_{j}=\max _{S, \operatorname{dim} S=N-j+1} \min _{\mathbf{v} \in S, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}},
$$

where S denotes a subspace of \mathbb{R}^{N}.
For $j=1$ we have

$$
\lambda_{1}=\max _{S, \operatorname{dim} S=N} \min _{\mathbf{v} \in S, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}}=\min _{\mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}} .
$$

The next inequality follows from (1) and (2), such that

$$
c_{1} \leq \frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \mathrm{~d} \boldsymbol{x}}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\text {ref }} \nabla u \mathrm{~d} \boldsymbol{x}}=\frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq \mathbf{0} .
$$

* e.g. Theorem 8.1.2 in G. H. Golub, Ch. F. Van Loan: Matrix Computations.

Generalized eigenvalues of material data

- material data

$$
c_{1} \leq \frac{\boldsymbol{w}^{T} \mathbf{A}(\boldsymbol{x}) \boldsymbol{w}}{\boldsymbol{w}^{T} \mathbf{A}^{\text {ref }}(\boldsymbol{x}) \boldsymbol{w}} \leq c_{2}, \quad \boldsymbol{x} \in \Omega, \text { and } \boldsymbol{w} \in \mathbb{R}^{d}, \boldsymbol{w} \neq 0
$$

- lower bound

$$
\lambda_{1}^{\mathrm{L}}=\underset{\boldsymbol{x} \in \Omega}{\operatorname{essinf}} \lambda_{\text {min }}\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \leq \min _{\mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\mathrm{ref}} \mathbf{v}}=\lambda_{1}
$$

- localization

$$
\lambda_{r(1)}^{\mathrm{L}}=\underset{\boldsymbol{x} \in \mathcal{P}_{r(1)}}{\mathrm{ess} \inf } \lambda_{\text {min }}\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
$$

Courant-Fischer min-max theorem ${ }^{\dagger}$

If $\mathbf{K}, \mathbf{K}^{\text {ref }} \in \mathbb{R}^{N \times N}$ are symmetric positive definite, then

$$
\lambda_{j}=\max _{S, \operatorname{dim} S=N-j+1} \min _{\mathbf{v} \in S, \mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}}
$$

where S denotes a subspace of \mathbb{R}^{N}.
For $j=1$ we have

$$
\lambda_{1}=\max _{S, \operatorname{dim} S=N} \min _{\mathbf{v} \in S, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\mathrm{ref}} \mathbf{v}}=\min _{\mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\mathrm{ref}} \mathbf{v}}
$$

The next inequality follows from (1) and (2), such that

$$
\lambda_{r(1)}^{\mathrm{L}}=\min _{\mathcal{P}_{k} \subset \Omega} \lambda_{k}^{\mathrm{L}} \leq \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\mathrm{ref}} \mathbf{v}}=\frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \mathrm{~d} \boldsymbol{x}}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\mathrm{ref}} \nabla u \mathrm{~d} \boldsymbol{x}}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq 0
$$

\dagger e.g. Theorem 8.1.2 in G. H. Golub, Ch. F. Van Loan: Matrix Computations.

Courant-Fischer min-max theorem

If $\mathbf{K}, \mathbf{K}^{\text {ref }} \in \mathbb{R}^{N \times N}$ are symmetric positive definite, then

$$
\lambda_{j}=\max _{S, \operatorname{dim} S=N-j+1} \min _{\mathbf{v} \in S, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}},
$$

where S denotes a subspace of \mathbb{R}^{N}.
For $j=2$ we have

$$
\lambda_{2}=\max _{S, \operatorname{dim} S=N-1} \min _{\mathbf{v} \in S, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\mathrm{ref}} \mathbf{v}} \geq \min _{\mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq 0, \mathbf{v}_{r(1)}=0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\mathrm{ref}} \mathbf{v}}
$$

The next inequality follows from (1) and (2),

$$
\lambda_{r(2)}^{\mathrm{L}}=\min _{\mathcal{P}_{k} \subset \mathcal{D}} \lambda_{k}^{\mathrm{L}} \leq \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}}=\frac{\int_{\mathcal{D}} \nabla u \cdot \mathbf{A} \nabla u \mathrm{~d} \boldsymbol{x}}{\int_{\mathcal{D}} \nabla u \cdot \mathbf{A}^{\text {ref }} \nabla u \mathrm{~d} \boldsymbol{x}}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq 0, \mathbf{v}_{r(1)}=0
$$

where (due to $\left.\mathbf{v}_{r(1)}=0\right) \mathcal{D}$ contains only the supports of $\varphi_{k}, k \neq r(1)$.

Geometric interpretation

- Lower bounds:
$\lambda_{r(1)}^{\mathrm{L}}$ found in x_{1}
$\lambda_{r(2)}^{\mathrm{L}}$ found in x_{2}
$0 \lambda_{r(3)}^{\mathrm{L}}$ found in x_{3}
$0 \lambda_{r(4)}^{\mathrm{L}}$ found in x_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
$\lambda_{r(2)}^{\mathrm{L}}$ found in x_{2}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in x_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
found in x_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}

Example 2: Continuous data

- material data:

$$
\mathbf{A}(\boldsymbol{x})=\left(\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right)+\left(\begin{array}{cc}
0.3 \sin \left(x_{2}\right) & 0.1 \cos \left(x_{1}\right) \\
0.1 \cos \left(x_{1}\right) & 0.3 \sin \left(x_{2}\right)
\end{array}\right)
$$

- reference data:

$$
\mathbf{A}_{1}^{\mathrm{ref}}(\boldsymbol{x})=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{A}_{2}^{\mathrm{ref}}(\boldsymbol{x})=\left(\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right)
$$

Example 2: Discontinuous data

- material data:

$$
\mathbf{A}(\boldsymbol{x})=\left(\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right)+\left(\begin{array}{cc}
0.3 \operatorname{sgn}\left(x_{2}\right) & 0.1 \cos \left(x_{1}\right) \\
0.1 \cos \left(x_{1}\right) & 0.3 \operatorname{sgn}\left(x_{2}\right)
\end{array}\right)
$$

- reference data:

$$
\mathbf{A}_{1}^{\mathrm{ref}}(\boldsymbol{x})=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{A}_{2}^{\mathrm{ref}}(\boldsymbol{x})=\left(\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right)
$$

Homogeneous subdomain

－scalar multiple

$$
\boldsymbol{A}^{\text {ref }}(\boldsymbol{x})=a \boldsymbol{A}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{P}_{k}
$$

－bounds

$$
\begin{aligned}
\lambda_{k}^{\mathrm{L}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \inf } \lambda_{\min }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \\
\lambda_{k}^{\mathrm{U}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\mathrm{ess} \sup _{p}} \lambda_{\max }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
\end{aligned}
$$

Homogeneous subdomain

- scalar multiple

$$
\boldsymbol{A}^{\text {ref }}(\boldsymbol{x})=a \boldsymbol{A}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{P}_{k}
$$

- bounds

$$
\begin{aligned}
\lambda_{k}^{\mathrm{L}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \inf } \lambda_{\min }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \\
\lambda_{k}^{\mathrm{U}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\mathrm{ess} \sup _{p}} \lambda_{\max }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
\end{aligned}
$$

Homogeneous subdomain

- scalar multiple

$$
\boldsymbol{A}^{\text {ref }}(\boldsymbol{x})=a \boldsymbol{A}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{P}_{k}
$$

- bounds

$$
\begin{array}{r}
\lambda_{k}^{\mathrm{L}}=\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \inf } \lambda_{\min }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \\
\lambda_{k}^{\mathrm{U}}=\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \sup _{\max }} \lambda_{\max }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
\end{array}
$$

Example 3: Scalar multiple

- $\boldsymbol{A}^{r e f}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

A_{1}	$\mathrm{~A}_{2}$
Ω	

Example 3: Scalar multiple

- $\boldsymbol{A}^{r e f}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

| A_{1} A_{2}
 Ω ${ }^{2}$ |
| :--- | :--- |

Example 3: Scalar multiple

- $\boldsymbol{A}^{\text {ref }}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

Example 4: Interfaces

- $\boldsymbol{A}^{\text {ref }}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

Example 4: Interfaces

- $\boldsymbol{A}^{\text {ref }}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
A_{2}
$\Omega \quad \mathrm{A}_{1}$

Example 4: Interfaces

- $\boldsymbol{A}^{\text {ref }}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

Example 4: Interfaces

- $\boldsymbol{A}^{\text {ref }}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$

Homogeneous subdomain

- scalar multiple

$$
\boldsymbol{A}^{\text {ref }}(\boldsymbol{x}) \neq a \boldsymbol{A}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{P}_{k}
$$

- bounds

$$
\begin{aligned}
\lambda_{k}^{\mathrm{L}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \inf } \lambda_{\min }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \\
\lambda_{k}^{\mathrm{U}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\mathrm{ess} \sup _{\max }} \lambda_{\max }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
\end{aligned}
$$

Homogeneous subdomain

- scalar multiple

$$
\boldsymbol{A}^{\text {ref }}(\boldsymbol{x}) \neq a \boldsymbol{A}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{P}_{k}
$$

- bounds

$$
\begin{aligned}
\lambda_{k}^{\mathrm{L}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \inf } \lambda_{\min }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \\
\lambda_{k}^{\mathrm{U}} & =\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\mathrm{ess} \sup _{p}} \lambda_{\max }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
\end{aligned}
$$

Homogeneous subdomain

- scalar multiple

$$
\boldsymbol{A}^{\text {ref }}(\boldsymbol{x}) \neq a \boldsymbol{A}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{P}_{k}
$$

- bounds

$$
\begin{array}{r}
\lambda_{k}^{\mathrm{L}}=\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \inf } \lambda_{\min }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right) \\
\lambda_{k}^{\mathrm{U}}=\underset{\boldsymbol{x} \in \mathcal{P}_{k}}{\operatorname{ess} \sup _{\max }} \lambda_{\max }\left(\left(\mathbf{A}^{\mathrm{ref}}(\boldsymbol{x})\right)^{-1} \mathbf{A}(\boldsymbol{x})\right)
\end{array}
$$

$$
\overbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)^{-1}}^{\left(\mathbf{A}^{\text {ref }}\right)^{-1}} \overbrace{\left(\begin{array}{cc}
2 & 0 \\
0 & 1.8
\end{array}\right)}^{\mathbf{A}} \longrightarrow 1.8 \quad 2
$$

Example 4

- $\boldsymbol{A}^{r e f}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
$\mathrm{A}_{1} \quad \mathrm{~A}_{2}$

Example 4

- $\boldsymbol{A}^{\text {ref }}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1.5\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$
$\mathrm{A}_{1} \quad \mathrm{~A}_{2}$

Example 4

- $\boldsymbol{A}^{\text {ref }}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad \boldsymbol{A}_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & 1.5\end{array}\right) \quad \boldsymbol{A}_{2}=\left(\begin{array}{cc}2 & 0 \\ 0 & 1.8\end{array}\right)$

Example 5: Optimization

$$
\mathbf{A}^{\mathrm{ref}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Example 5: Optimization

A_{2}	
$\left(\begin{array}{ll}0.3 & 1.1\end{array}\right)$	$\left(\begin{array}{ll}0.5 & 0.9\end{array}\right)$
	A_{1}
$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$
$\left(\begin{array}{ll}1.1 & 1.5\end{array}\right)$	$\left(\begin{array}{ll}0.9 & 1.7\end{array}\right)$
Ω	

$$
\mathbf{A}^{\mathrm{ref}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Example 5: Optimization

A_{2}	
$\left(\begin{array}{ll}0.43 & 0.84\end{array}\right)$	A_{1}
$\left(\begin{array}{ll}0.69 & 0.71\end{array}\right)$	
	A_{3}
$\left(\begin{array}{ll}1.15 & 1.57\end{array}\right)$	$\left(\begin{array}{ll}1.29 & \mathrm{~A}_{4} \\ \Omega & 1.31\end{array}\right)$

$$
\mathbf{A}^{\mathrm{ref}}=\left(\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right)
$$

Example 5: Optimization

A_{2}	
$\left(\begin{array}{ll}0.6 & 1.22\end{array}\right)$	A_{1}
$\left(\begin{array}{ll}1.0 & 1.0\end{array}\right)$	
A_{3}	$\mathrm{~A}_{4}$
$\left(\begin{array}{ll}1.67 & 2.2\end{array}\right)$	$\left(\begin{array}{ll}1.8 & 1.88\end{array}\right)$
Ω	

$$
\mathbf{A}^{\mathrm{ref}}=\mathbf{A}_{1}=\left(\begin{array}{cc}
0.7 & 0.2 \\
0.2 & 0.7
\end{array}\right)
$$

Example 5: Optimization

A_{2}	
$\left(\begin{array}{ll}1.0 & 1.0\end{array}\right)$	$\left(\begin{array}{cl}0.8 & \mathrm{~A}_{1} \\ \hline\end{array}\right.$
A_{3}	$\mathrm{~A}_{4}$
$\left(\begin{array}{ll}1.36 & 3.67\end{array}\right)$	$\left(\begin{array}{ll}1.55 & 3.0\end{array}\right)$
Ω	

$$
\mathbf{A}^{\mathrm{ref}}=\mathbf{A}_{2}=\left(\begin{array}{cc}
0.7 & 0.4 \\
0.4 & 0.7
\end{array}\right)
$$

Example 5: Optimization

A_{2}	
$\left(\begin{array}{ll}0.27 & 0.73\end{array}\right)$	$\left(\begin{array}{ll}0.45 & 0.6\end{array}\right)$
	A_{1}
$\left(\begin{array}{ll}1.0 & 1.0\end{array}\right)$	$\left(\begin{array}{ll}0.82 & 1.13\end{array}\right)$
Ω	A_{4}

$$
\mathbf{A}^{\mathrm{ref}}=\mathbf{A}_{3}=\left(\begin{array}{ll}
1.3 & 0.2 \\
0.2 & 1.3
\end{array}\right)
$$

Example 5: Optimization

A_{2}	
$\left(\begin{array}{ll}0.33 & 0.65\end{array}\right)$	A_{1}
$\left(\begin{array}{ll}0.53 & 0.55\end{array}\right)$	
A_{3}	$\mathrm{~A}_{4}$
$\left(\begin{array}{ll}0.88 & 1.2\end{array}\right)$	$\left(\begin{array}{ll}1.0 & 1.0\end{array}\right)$
Ω	

$$
\mathbf{A}^{\mathrm{ref}}=\mathbf{A}_{4}=\left(\begin{array}{ll}
1.3 & 0.4 \\
0.4 & 1.3
\end{array}\right)
$$

Small-strain elasticity

- governing equation

$$
-\partial^{\top} \mathbf{C}(x) \partial u(x)=\boldsymbol{F}(x) \quad x \in \Omega
$$

- original system matrix
- reference system matrix

$$
\mathbf{K}=\int_{\Omega} \boldsymbol{\partial} \boldsymbol{v}^{T} \mathbf{C} \boldsymbol{\partial} \boldsymbol{u} \mathrm{~d} \boldsymbol{x} \quad \mathbf{K}^{\mathrm{ref}}=\int_{\Omega} \boldsymbol{\partial} \boldsymbol{v}^{T} \mathbf{C}^{\mathrm{ref}} \boldsymbol{\partial} \boldsymbol{u} \mathrm{~d} \boldsymbol{x}
$$

- approximation

$$
u_{\alpha}(\boldsymbol{x}) \approx u_{\alpha}^{N}(\boldsymbol{x})=\sum_{I=1}^{N} u_{\alpha}^{N}\left(\boldsymbol{x}_{\mathrm{n}}^{I}\right) \varphi^{I}(\boldsymbol{x})
$$

Geometric interpretation

- Lower bounds:

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
o $\lambda_{r}^{\mathrm{L}}{ }^{(2)}$ found in x_{1}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in x_{2}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in x_{2}
- $\lambda_{r(5)}^{\mathrm{L}}$ found in x_{3}
- $\lambda_{r(6)}^{\mathrm{L}}$ found in x_{3}
- $\lambda_{r(7)}^{\mathrm{L}}$ found in x_{3}
- $\lambda_{r(8)}^{\mathrm{L}}$ found in x_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in x_{2}
- $\lambda_{r(5)}^{\mathrm{L}}$ found in x_{3}
- $\lambda_{r(6)}^{\mathrm{L}}$ found in x_{3}
- $\lambda_{r(7)}^{\mathrm{L}}$ found in x_{3}
- $\lambda_{r(8)}^{\mathrm{L}}$ found in x_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2} $\lambda_{T(5)}^{\mathrm{L}}$ found in x_{3}
$\lambda_{r(6)}^{\mathrm{L}}$ found in x_{3}
$\lambda_{r(7)}^{\mathrm{L}}$ found in x_{3}
$\lambda_{r(8)}^{\mathrm{L}}$ found in x_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(5)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
$-\lambda_{r(6)}^{\mathrm{L}}$
o
$\lambda_{(7)}^{\mathrm{L}}$
o
$\lambda_{r(8)}^{\mathrm{L}}$ found in in x_{3} found in x_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(5)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(6)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(7)}^{\mathrm{L}}$ found in x_{3}
- $\lambda_{r(8)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(5)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(6)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(7)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}

Geometric interpretation

- Lower bounds:
- $\lambda_{r(1)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(2)}^{\mathrm{L}}$ found in \boldsymbol{x}_{1}
- $\lambda_{r(3)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(4)}^{\mathrm{L}}$ found in \boldsymbol{x}_{2}
- $\lambda_{r(5)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(6)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(7)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}
- $\lambda_{r(8)}^{\mathrm{L}}$ found in \boldsymbol{x}_{3}

Example 6: Elasticity

$$
\boldsymbol{C}(\boldsymbol{x})=\frac{E(\boldsymbol{x})}{(1+\nu)(1-2 \nu)}\left(\begin{array}{ccc}
1-\nu & \nu & 0 \\
\nu & 1-\nu & 0 \\
0 & 0 & 0.5-\nu)
\end{array}\right), \quad \nu=0.2 .
$$

$$
\mathbf{C}_{1}^{\text {ref }}:\left\{E=1, \nu_{1}=0\right\} \quad \text { and } \quad \mathbf{C}_{2}^{\text {ref }}:\left\{E=1, \nu_{1}=0.2\right\}
$$

$E=0.7$	$E=1.3$
$E=1.3$	$E=0.7$
Ω	

Material data in quadrature points

- quadrature

$$
\int_{\Omega} \boldsymbol{\partial} \tilde{\boldsymbol{v}}(\boldsymbol{x})^{\top} \mathbf{C}^{\mathrm{ref}}(\boldsymbol{x}) \boldsymbol{\partial} \boldsymbol{u}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \approx \sum_{Q=1}^{N_{\mathrm{Q}}} \boldsymbol{\partial} \tilde{\boldsymbol{v}}\left(\boldsymbol{x}_{\mathrm{q}}^{Q}\right)^{\top} \mathbf{C}^{\mathrm{ref}}\left(\boldsymbol{x}_{\mathrm{q}}^{Q}\right) \boldsymbol{\partial} \boldsymbol{u}\left(\boldsymbol{x}_{\mathrm{q}}^{Q}\right) w^{Q}
$$

- bounds over quadrature points

$$
\begin{aligned}
& \lambda_{k}^{\mathrm{L}}=\min _{\boldsymbol{x}_{\mathrm{q}}^{Q} \in \operatorname{supp} \varphi^{k}} \lambda_{\min }\left(\left(\mathbf{C}^{\text {ref }}\left(\boldsymbol{x}_{\mathrm{q}}^{Q}\right)\right)^{-1} \mathbf{C}\left(\boldsymbol{x}_{\mathrm{q}}^{Q}\right)\right), \quad k=1, \ldots, d N \\
& \lambda_{k}^{\mathrm{U}}=\max _{\boldsymbol{x}_{\mathrm{q}}^{Q} \in \operatorname{supp} \varphi^{k}} \lambda_{\max }\left(\left(\mathbf{C}^{\text {ref }}\left(\boldsymbol{x}_{\mathrm{q}}^{Q}\right)\right)^{-1} \mathbf{C}\left(\boldsymbol{x}_{\mathrm{q}}^{Q}\right)\right), \quad k=1, \ldots, d N
\end{aligned}
$$

Implementation per elements

- compute bounds for every element

$$
c_{1} \leq \frac{\boldsymbol{w}^{T} \mathbf{A}(\boldsymbol{x}) \boldsymbol{w}}{\boldsymbol{w}^{T} \mathbf{A}^{\mathrm{ref}}(\boldsymbol{x}) \boldsymbol{w}} \leq c_{2}, \quad \boldsymbol{x} \in \Omega^{e}, \text { and } \boldsymbol{w} \in \mathbb{R}^{d}, \boldsymbol{w} \neq 0, e=1, \ldots, N_{\mathrm{e}}
$$

- bounds on local matrices

$$
c_{1} \leq \frac{\mathbf{v}^{T} \mathbf{K}_{e} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}_{e}^{\text {ref }} \mathbf{v}}=\frac{\int_{\Omega^{e}} \nabla u \cdot \mathbf{A} \nabla u \mathrm{~d} \boldsymbol{x}}{\int_{\Omega^{e}} \nabla u \cdot \mathbf{A}^{\text {ref }} \nabla u \mathrm{~d} \boldsymbol{x}} \leq c_{2}
$$

- local matrices $\mathbf{K}_{e} \in \mathbb{R}^{N \times N}$ and $\mathbf{K}_{e}^{\text {ref }} \in \mathbb{R}^{N \times N}$

$$
\mathbf{K}=\sum_{e=1}^{N_{\mathrm{e}}} \mathbf{K}_{e}, \quad \mathbf{K}^{\mathrm{ref}}=\sum_{e=1}^{N_{\mathrm{e}}} \mathbf{K}_{e}^{\mathrm{ref}}
$$

Bounds from local matrices

- lower bound on the first eigenvalue

$$
\mathbf{v}^{T} \mathbf{K} \mathbf{v} \geq \lambda_{1}^{\mathrm{L}} \mathbf{v}^{T} \mathbf{K}^{\mathrm{ref}} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq \mathbf{0}
$$

- equivalently in the sum form

$$
\sum_{e=1}^{N_{e}} \mathbf{v}^{T} \mathbf{K}_{e} \mathbf{v} \geq \lambda_{1}^{\mathrm{L}} \sum_{e=1}^{N_{e}} \mathbf{v}^{T} \mathbf{K}_{e}^{\text {ref }} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq \mathbf{0}
$$

- sufficient condition

$$
\mathbf{v}^{T} \mathbf{K}_{e} \mathbf{v} \geq \lambda_{1}^{\mathrm{L}} \mathbf{v}^{T} \mathbf{K}_{e}^{\mathrm{ref}} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq \mathbf{0}, e=1, \ldots, N_{\mathrm{e}}
$$

Courant-Fischer min-max theorem

- Courant-Fischer min-max principle

$$
\lambda_{2}=\max _{S, \operatorname{dim} S=N-1} \min _{\mathbf{v} \in S, \mathbf{v} \neq 0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}} \geq \min _{\mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq 0, \mathbf{v}_{r(1)}=0} \frac{\mathbf{v}^{T} \mathbf{K} \mathbf{v}}{\mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}}
$$

- any $\lambda_{2}^{L} \in \mathbb{R}$ such that

$$
\mathbf{v}^{T} \mathbf{K} \mathbf{v} \geq \lambda_{2}^{\mathrm{L}} \mathbf{v}^{T} \mathbf{K}^{\text {ref }} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v}_{r(1)}=0
$$

is a lower bound to λ_{2}.

- sufficient condition

$$
\mathbf{v}^{T} \mathbf{K}_{e} \mathbf{v} \geq \lambda_{2}^{\mathrm{L}} \mathbf{v}^{T} \mathbf{K}_{e}^{\text {ref }} \mathbf{v}, \quad e=1, \ldots, N_{\mathrm{e}}, \quad \mathbf{v} \in \mathbb{R}^{N}, \mathbf{v} \neq \mathbf{0}, \mathbf{v}_{r(1)}=0
$$

Generalized bounds

- locally assembled system matrices

$$
\mathbf{K}=\sum_{e=1}^{N_{e}} \mathbf{K}_{e} \quad \mathbf{K}^{\mathrm{ref}}=\sum_{e=1}^{N_{\mathrm{e}}} \mathbf{K}_{e}^{\mathrm{ref}}
$$

- can be applied to:
- finite difference
- stochastic Galerkin FE method
- algebraic multilevel preconditioning
- discontinuous Galerkin

Note that symmetric positive semi-definite $\mathbf{K}_{e} \in \mathbb{R}^{N \times N}$ and $\mathbf{K}_{e}^{\text {ref }} \in \mathbb{R}^{N \times N}$ must have the same kernels

Example 7: Finite difference 1

- material data:

$$
\mathbf{A}(\boldsymbol{x})=\left(1+0.3 \cos \left(\left(x_{1}+x_{2}\right) \frac{\pi}{2}\right)\right)\left(\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right)
$$

- reference data:

$$
\mathbf{A}_{1}^{\mathrm{ref}}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \text { and } \quad \mathbf{A}_{2}^{\mathrm{ref}}=\left(\begin{array}{cc}
1 & 0.3 \\
0.3 & 1
\end{array}\right)
$$

Table of contents

```
Motivation
Introduction
Theory: Eigenvalues bounds
    Scalar elliptic problems
    Elasticity problems
    Generalization
```

Applications: Computation homogenization
Fourier-Galerkin discretizationFinite element discretization
Conclusions

Preconditioned conjugate gradients

- preconditioned system

$$
\left(\mathbf{K}^{\text {ref }}\right)^{-1} \mathbf{K} \mathbf{u}=\left(\mathbf{K}^{\text {ref }}\right)^{-1} \mathbf{b}
$$

- additional system

$$
\mathbf{K}^{\mathrm{ref}} \mathbf{z}_{k}=\mathbf{r}_{k}
$$

procedure $\operatorname{PCG}\left(\boldsymbol{u}_{0}, \mathbf{K}, \mathbf{b}, \mathbf{M}\right.$, tol, $\left.i t_{\text {max }}\right)$
2.

3:
4.

5: $\quad n r_{0}:=\left\|r_{0}\right\|$
5: $\quad \mathbf{p}_{0}:=\mathbf{z}_{0}$
$\frac{6}{7}$:
7: while $k \leq i t_{\max }$ do $\quad \triangleright k=0,1, \ldots, i t_{\max }$

8: $\quad \mathrm{Kp}_{k}=\mathrm{Kp}_{k}$
9: $\quad \alpha_{k}=\frac{\mathbf{r}_{k}^{\top} \mathbf{z}_{k}}{\mathbf{p}_{k}^{\top} K \mathbf{p}_{k}}$
10: $\quad \delta \tilde{\boldsymbol{u}}_{k+1}=\delta \tilde{\boldsymbol{u}}_{k}+\alpha_{k} \boldsymbol{p}_{k}$
11: $\quad \mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} \mathbf{K p}_{k}$
12: $\quad \mathbf{z}_{k+1}=\mathrm{M}^{-1} \mathbf{r}_{k+1}$
13: $\quad n r_{k+1}=\left\|r_{k+1}\right\|$
14: if $\frac{n r_{k+1}}{n r_{0}}<t o l$ then
15: return u_{k+1}
16: $\quad \beta_{k}=\frac{\mathbf{r}_{k+1}^{\top} \mathbf{z}_{k+1}}{\mathbf{r}_{k}^{\top} z_{k}}$
17: $\quad \mathbf{p}_{k+1}=\mathbf{z}_{k+1}+\beta_{k} \mathbf{p}_{k}$
18:
19: $k=k+1$
20: return u_{k}

Periodic homogenization

- governing equation

$$
\begin{array}{r}
-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x})=0 \quad \boldsymbol{x} \in \mathcal{Y} \\
\text { periodic B.C. }
\end{array}
$$

- overall gradient field

- homogenized (constant) material data

A rectangular cell with outlined periodic microstructure.

Periodic homogenization

- governing equation

$$
\begin{array}{r}
-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x})=0 \quad \boldsymbol{x} \in \mathcal{Y} \\
\text { periodic B.C. }
\end{array}
$$

- overall gradient field

$$
\begin{aligned}
\nabla u(\boldsymbol{x})=\boldsymbol{e} & +\nabla \tilde{u}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{Y} \\
\boldsymbol{e} & =\frac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \nabla u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \in \mathbb{R}^{d}
\end{aligned}
$$

- homogenized (constant) material data

Periodic homogenization

- governing equation

$$
\begin{array}{r}
-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x})=0 \quad \boldsymbol{x} \in \mathcal{Y} \\
\text { periodic B.C. }
\end{array}
$$

- overall gradient field

$$
\begin{aligned}
\nabla u(\boldsymbol{x})= & \boldsymbol{e}+\nabla \tilde{u}(\boldsymbol{x}) \quad \boldsymbol{x} \in \mathcal{Y} \\
\boldsymbol{e} & =\frac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \nabla u(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \in \mathbb{R}^{d}
\end{aligned}
$$

- homogenized (constant) material data

$$
\mathbf{A}_{\mathrm{H}} \boldsymbol{e}=\frac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \mathbf{A}(\boldsymbol{x})(\boldsymbol{e}+\nabla \tilde{u}(\boldsymbol{x})) \mathrm{d} \boldsymbol{x}
$$

Periodic homogenization

- governing equation

$$
-\nabla \cdot \mathbf{A}(\boldsymbol{x})(\boldsymbol{e}+\nabla \tilde{u}(\boldsymbol{x}))=0 \quad \boldsymbol{x} \in \mathcal{Y}
$$

- weak form
- system matrix
$\mathrm{K}[j, i]=\int_{\nu} \nabla \varphi_{j}(x)^{\top} \mathrm{A} \nabla \varphi_{i}(x) \mathrm{d} x$

$$
\mathcal{V}=\left\{\tilde{v}: H_{p e r}^{1}(\mathcal{Y}), \int_{\mathcal{Y}} \tilde{v}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0\right\}
$$

Periodic homogenization

- governing equation

$$
-\nabla \cdot \mathbf{A}(\boldsymbol{x})(\boldsymbol{e}+\nabla \tilde{u}(\boldsymbol{x}))=0 \quad \boldsymbol{x} \in \mathcal{Y}
$$

- weak form

$$
\int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \nabla \tilde{u}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \boldsymbol{e} \mathrm{d} \boldsymbol{x} \quad \tilde{v} \in \mathcal{V}
$$

- system matrix

$$
\mathcal{V}=\left\{\tilde{v}: H_{p e r}^{1}(\mathcal{Y}), \int_{\mathcal{Y}} \tilde{v}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0\right\}
$$

Periodic homogenization

- governing equation

$$
-\nabla \cdot \mathbf{A}(\boldsymbol{x})(\boldsymbol{e}+\nabla \tilde{u}(\boldsymbol{x}))=0 \quad \boldsymbol{x} \in \mathcal{Y}
$$

- weak form

$$
\int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \nabla \tilde{u}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\top} \mathbf{A}(\boldsymbol{x}) \boldsymbol{e} \mathrm{d} \boldsymbol{x} \quad \tilde{v} \in \mathcal{V}
$$

- system matrix

$$
\mathbf{K}[j, i]=\int_{\mathcal{Y}} \nabla \varphi_{j}(\boldsymbol{x})^{\top} \mathbf{A} \nabla \varphi_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

$$
\mathcal{V}=\left\{\tilde{v}: H_{p e r}^{1}(\mathcal{Y}), \int_{\mathcal{Y}} \tilde{v}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0\right\}
$$

Fourier-Galerkin method

- regular (pixel/voxel) data structure
- Fourier-basis

$$
\begin{aligned}
\tilde{u}(\boldsymbol{x}) & \approx \sum_{i=0}^{N} \widehat{u}_{i} \varphi_{i}^{F G}(\boldsymbol{x})=\sum_{i=0}^{N} \widehat{u}_{i} \exp \left(2 \pi \mathrm{i} \boldsymbol{k}_{i} \boldsymbol{x}\right) \\
\nabla \tilde{u}(\boldsymbol{x}) & \approx \sum_{i=0}^{N} \widehat{u}_{i} \nabla \varphi_{i}^{F G}(\boldsymbol{x})=\sum_{i=0}^{N} 2 \pi \mathrm{i} \boldsymbol{k}_{i} \widehat{u}_{i} \exp \left(2 \pi \mathrm{i} \boldsymbol{k}_{i} \boldsymbol{x}\right)
\end{aligned}
$$

- linear system with Fourier coefficient

$$
\mathbf{F}^{H} \widehat{\mathbf{K}} \mathbf{F} \tilde{\mathbf{u}}=\mathbf{b} \quad \widehat{\mathbf{u}}=\mathbf{F} \tilde{\mathbf{u}}
$$

Fourier-Galerkin method: Homogeneous reference data

- closed-form expression

$$
\widehat{\mathbf{K}}^{\text {ref }}[j, i]=\int_{\mathcal{Y}} \nabla \varphi_{j}^{F G}(\boldsymbol{x})^{\top} \mathbf{A}^{\mathrm{ref}} \nabla \varphi_{i}^{F G}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}= \begin{cases}\boldsymbol{k}_{j}^{\top} \mathbf{A}^{\text {ref }} \boldsymbol{k}_{i} & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

- $\widehat{\mathbf{K}}^{\text {ref }}$ is block diagonal in the Fourier space

$$
\left(\mathbf{K}^{\text {ref }}\right)^{-1}=\mathbf{F}^{\mathrm{H}}\left(\widehat{\mathbf{K}}^{\text {ref }}\right)^{-1} \mathbf{F}
$$

- accelerated by FFT

$$
\underbrace{\mathcal{F}^{-1}\left(\widehat{\mathbf{K}}^{\text {ref }}\right)^{-1} \mathcal{F}}_{\left(\mathbf{K}^{\text {ref }}\right)^{-1}} \mathbf{K} \tilde{\mathbf{u}}=\underbrace{\mathcal{F}^{-1}\left(\widehat{\mathbf{K}}^{\text {ref }}\right)^{-1} \mathcal{F}}_{\left(\mathbf{K}^{\text {ref }}\right)^{-1}} \mathbf{b}
$$

Fourier-Galerkin method: Heat conduction

Oscillations

Damage fields in concrete

Fourier basis
linear FE basis.

Finite element method: discretisation grids

- Pixels - - Elements

- Discretisation nodes $\boldsymbol{x}_{\mathrm{n}}^{I}$

Finite element method: Assembly of $\widehat{\mathbf{K}}^{\text {ref }}$

- no (simple) closed-form expression

$$
\widehat{\mathbf{K}}^{\text {ref }}[j, i]=\int_{\mathcal{Y}} \nabla \varphi_{j}^{F E}(\boldsymbol{x})^{\top} \mathbf{A}^{\text {ref }} \nabla \varphi_{i}^{F E}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \neq \begin{cases}\boldsymbol{k}_{j}^{\top} \mathbf{A}^{\text {ref }} \boldsymbol{k}_{i} & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

- $\widehat{K}^{\text {ref }}$ is diagonal

Finite element method: Assembly of $\widehat{\mathbf{K}}^{\text {ref }}$

- no (simple) closed-form expression

$$
\widehat{\mathbf{K}}^{\text {ref }}[j, i]=\int_{\mathcal{Y}} \nabla \varphi_{j}^{F E}(\boldsymbol{x})^{\top} \mathbf{A}^{\text {ref }} \nabla \varphi_{i}^{F E}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \neq \begin{cases}\boldsymbol{k}_{j}^{\top} \mathbf{A}^{\text {ref }} \boldsymbol{k}_{i} & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

- $\widehat{\mathbf{K}}^{\text {ref }}$ is diagonal

$$
\left(\mathbf{K}^{\mathrm{ref}}\right)^{-1}=\mathbf{F}_{d}^{\mathrm{H}}\left(\widehat{\mathbf{K}}^{\mathrm{ref}}\right)^{-1} \mathbf{F}_{d} .
$$

The block-circulant structure of $\mathbf{K}^{\text {ref }}$

- Elements - Discretisation nodes - $\boldsymbol{x}_{\mathrm{n}}^{I}$

$\mathbf{K}^{\text {ref }}$

Finite element method: Assembly of $\widehat{\mathbf{K}}^{\text {ref }}$

- $\widehat{\mathbf{K}}^{\text {ref }}$ is diagonal

$$
\left(\mathbf{K}^{\text {ref }}\right)^{-1}=\mathbf{F}_{d}^{\mathrm{H}}\left(\widehat{\mathbf{K}}^{\text {ref }}\right)^{-1} \mathbf{F}_{d} .
$$

- unit impulse
- diagonal

Finite element method: Assembly of $\widehat{\mathbf{K}}^{\text {ref }}$

- $\widehat{\mathbf{K}}^{\text {ref }}$ is diagonal

$$
\left(\mathbf{K}^{\text {ref }}\right)^{-1}=\mathbf{F}_{d}^{\mathrm{H}}\left(\widehat{\mathbf{K}}^{\text {ref }}\right)^{-1} \mathbf{F}_{d} .
$$

- unit impulse

- diagonal

Finite element method: Assembly of $\widehat{\mathbf{K}}^{\text {ref }}$

- $\widehat{\mathbf{K}}^{\text {ref }}$ is diagonal

$$
\left(\mathbf{K}^{\mathrm{ref}}\right)^{-1}=\mathbf{F}_{d}^{\mathrm{H}}\left(\widehat{\mathbf{K}}^{\mathrm{ref}}\right)^{-1} \mathbf{F}_{d} .
$$

- unit impulse

$$
\widehat{\mathbf{K}}^{\text {ref }}[:, 1]=\widehat{\mathbf{K}}^{\text {ref }}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

- diagonal

$$
\operatorname{diag}\left(\widehat{\mathbf{K}}^{\text {ref }}\right)=\mathcal{F}\left(\widehat{\mathbf{K}}^{\text {ref }}[:, 1]\right)
$$

Example 9: Grid size independence - elasticity

Example 9: Grid size independence - elasticity

Example 9: Grid size independence - elasticity

Example 9: Scaling

Example 9: Choice of reference material

Number of iterations to reach 10^{-6} residual norm

Example 10: Choice of reference material

	C $^{\text {ref }}$	Fourier	linear FE	bilinear FE
Newton		11	9	10
	I	1012	861	761
$(P) C G$	$\mathbf{I}_{\mathbf{s}}$	781	609	540
	C mean ref	585	457	407

Example 11: Damage in concrete - bilinear FE

Example 11: Damage in concrete - under-integrated bilinear FE

Example 11: Damage in concrete - linear FE

Example 11: Damage in concrete - isotropic mesh

Table of contents

```
Motivation
Introduction
Theory: Eigenvalues bounds
    Scalar elliptic problems
    Elasticity problems
    Generalization
Applications: Computation homogenization
    Fourier-Galerkin discretization
    Finite element discretization
```

Conclusions

The take-home message

The discrete Green's (Laplace) operator preconditioning makes condition number independent of mesh size. Additionally, the distribution of eigenvalues can be estimated and optimized.

Collaborations

- Eigenvalues bounds
- FFT-based FE solvers

- Fourier-Galerkin

Outlook \& Support

Outlook:

- improve eigenvalues bounds
- PCG convergence estimate for homogenization

```
Thanks for financial support:
- GACR: 23-04903O (Ladecký), GA20-14736S (Krejčí), GC17-04150J (Zeman)
- CAAS: CZ.02.1.01/0.0/0.0/16 019/0000778-01 (Jirásek, Bobok)
• SGS: SGS21/003-, SGS20/002-, SGS19/002-, SGS18/005-/OHK1/1T/11
```



```
CZECHSCIENCEFOUNDATION
```



```
CAAS

\section*{Outlook \& Support}

\section*{Outlook:}
- improve eigenvalues bounds
- PCG convergence estimate for homogenization

Thanks for financial support:
- GAČR: 23-04903O (Ladecký), GA20-14736S (Krejčí), GC17-04150J (Zeman)
- CAAS: CZ.02.1.01/0.0/0.0/16_019/0000778-01 (Jirásek, Bobok)
- SGS: SGS21/003-, SGS20/002-, SGS19/002-, SGS18/005-/OHK1/1T/11


\section*{CAAS}```

