Discrete Green's operator preconditioning: Theory and applications

Martin Ladecký Ivana Pultarová Jan Zeman

Department of Mathematics Faculty of Civil Engineering Czech Technical University in Prague

SNA'23 23-27 January 2023

Table of contents

Motivation

Introduction

Theory: Eigenvalues bounds

Scalar elliptic problems Elasticity problems Generalization

Applications: Computation homogenization

Fourier-Galerkin discretization Finite element discretization

Conclusions

Two-scale material analysis

Adopted from: Multiscale Computational Homogenization. F. Otero et al., Archives of Computational Methods in Engineering (2018)

Computational demands

Adapted from: Computational Homogenization of Polycrystals, J. Segurado et al. Advances in Applied Mechanics (2018)

Time consumption

Adopted from: A variational fast Fourier transform method for phase-transforming materials," by A. Cruzado et al. Modelling and Simulation in Materials Science and Engineering (2021). Solved using Abaqus FEA software suite (formerly ABAQUS) CTU CECH TECHNICAL UNIVERSITY UNIVERSITY

Grid size independence

C. R. Acad. Sci. Paris, t. 318, Série II, p. 1417-1423, 1994

Mécanique des solides/Mechanics of Solids

A fast numerical method for computing the linear and nonlinear mechanical properties of composites

Hervé MOULINEC and Pierre SUQUET

Abstract – This Note is devoted to a new iterative algorithm to compute the local and overall response of a composite from images of its (complex) microstructure. The elastic problem for a heterogeneous material is formulated with the help of a homogeneous reference medium and written under the form of a periodic Lippman-Schwinger equation. Using the fact that the Green's function of the pertinent operator is known explicitly in Fourier space, this equation is solved iteratively.

1417

Table of contents

Motivation

Introduction

Theory: Eigenvalues bounds

Scalar elliptic problems Elasticity problems Generalization

Applications: Computation homogenization

Fourier-Galerkin discretization Finite element discretization

Conclusions

Model problem

• elliptic problem

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) = f(\boldsymbol{x}) \quad \boldsymbol{x} \in \Omega$$
$$u(\boldsymbol{x}) = 0 \qquad \boldsymbol{x} \in \partial \Omega$$

$$\int_{\Omega} \nabla v(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} v(\boldsymbol{x})^{\mathsf{T}} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \quad v \in \mathcal{V}$$

• approximation

$$u(oldsymbol{x})pprox u^N(oldsymbol{x})=\sum_{i=1}^N u^N(oldsymbol{x}_i^{\mathrm{n}})arphi_i(oldsymbol{x})$$

Model problem

• elliptic problem

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) = f(\boldsymbol{x}) \quad \boldsymbol{x} \in \Omega$$
$$u(\boldsymbol{x}) = 0 \quad \boldsymbol{x} \in \partial \Omega$$

$$\int_{\Omega} \nabla v(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} v(\boldsymbol{x})^{\mathsf{T}} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \quad v \in \mathcal{V}$$

• approximation

$$u(oldsymbol{x})pprox u^N(oldsymbol{x})=\sum_{i=1}^N u^N(oldsymbol{x}_i^{\mathrm{n}})arphi_i(oldsymbol{x})$$

Model problem

• elliptic problem

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) = f(\boldsymbol{x}) \quad \boldsymbol{x} \in \Omega$$
$$u(\boldsymbol{x}) = 0 \quad \boldsymbol{x} \in \partial \Omega$$

• weak form

$$\int_{\Omega} \nabla v(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\Omega} v(\boldsymbol{x})^{\mathsf{T}} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \quad v \in \mathcal{V}$$

• approximation

$$u(\boldsymbol{x}) pprox u^N(\boldsymbol{x}) = \sum_{i=1}^N u^N(\boldsymbol{x}_i^{\mathrm{n}}) arphi_i(\boldsymbol{x})$$

System of linear equations

 $\mathbf{K}\mathbf{u} = \mathbf{b}$

• linear system matrix

$$\mathbf{K}[j,i] = \int_{\Omega} \nabla \varphi_j(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla \varphi_i(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

• unknown

$$\mathbf{u}[i] = u^N(\boldsymbol{x}^{\mathrm{n}}_i)$$

• right-hand side

$$\mathbf{b}[j] = \int_{\Omega} \varphi_j(\boldsymbol{x}) f(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x}$$

preconditioned system

$$\mathsf{M}^{-1}\mathsf{K}\mathsf{u} = \mathsf{M}^{-1}\mathsf{b}$$

• preconditioner

 $\mathbf{M}^{-1}\mathbf{K} \approx \mathbf{I}$

• symmetric form

$$M^{-1/2}KM^{-1/2}z = M^{-1/2}b,$$
 $z = M^{1/2}u$

1: procedure $PCG(u_0, K, b, M, tol, it_{max})$ 2: $\mathbf{r}_0 := \mathbf{b} - \mathbf{K} \mathbf{u}_0$ 3: $z_0 := M^{-1}r_0$ 4: $nr_0 := \|\mathbf{r}_0\|$ ▷ initial residual 5: 6: 7: 8: $p_{0} := z_{0}$ while $k \leq it_{max}$ do $\triangleright k = 0, 1, \dots, it_{max}$ $Kp_{l_1} = Kp_{l_2}$ $\alpha_k = \frac{\mathbf{r}_k^{\top} \mathbf{z}_k}{\mathbf{p}_k^{\top} \mathbf{K} \mathbf{p}_k}$ 9: 10: $\delta \tilde{\boldsymbol{u}}_{k+1} = \delta \tilde{\boldsymbol{u}}_k + \alpha_k \boldsymbol{\mathsf{p}}_k$ 11: $\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \mathbf{K} \mathbf{p}_k$ 12: $z_{k+1} = M^{-1}r_{k+1}$ 13: $nr_{k+1} = \|\mathbf{r}_{k+1}\|$ if $\frac{nr_{k+1}}{nr_0} < tol$ then 14: 15: return u_{k+1} $\boldsymbol{\beta}_{k} = \frac{\mathbf{r}_{k+1}^{\top} \mathbf{z}_{k+1}}{\mathbf{r}_{k}^{\top} \mathbf{z}_{k}}$ 16: 17: $\mathbf{p}_{k+1} = \mathbf{z}_{k+1} + \boldsymbol{\beta}_k \mathbf{p}_k$ 18: 19: 20: CTU k = k + 1return u_{l} . CTRON TROUMLON

Preconditioning approaches

• diagonal scaling or Jacobi

 $\mathbf{M} = \mathsf{diag}(\mathbf{K})$

• incomplete Cholesky or LU factorization

 $\mathbf{M} \approx \mathbf{L} \mathbf{L}^{\mathsf{T}}$

• operator (Laplace, discrete Green's) preconditioning

$$\mathbf{M}^{-1} = egin{bmatrix} \mathbf{K}_{1,1}^{-1} & \mathbf{0} \ & \ddots & \ \mathbf{0} & \mathbf{K}_{N,N}^{-1} \end{bmatrix}$$

Discrete Green's operator preconditioning

original problem

$$\mathbf{K} = \int_{\Omega} \nabla v(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

• reference problem

$$\mathbf{K}^{\mathsf{ref}} = \int_{\Omega} \nabla v(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}^{\mathsf{ref}}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

• discrete Green's (Laplace) operator preconditioned linear system

$${(\mathbf{K}^{\mathsf{ref}})}^{-1}\mathbf{K}\mathbf{u} = {(\mathbf{K}^{\mathsf{ref}})}^{-1}\mathbf{b}$$

Example 1: Setting

• original problem

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) = 0 \quad \boldsymbol{x} \in \Omega$$
$$\mathbf{A}(\boldsymbol{x}) = 161.45 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \boldsymbol{x} \in \Omega_{1,3}$$
$$\mathbf{A}(\boldsymbol{x}) = 1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \boldsymbol{x} \in \Omega_{2,4}$$

 \bullet () - ()

Ω_2	Ω_1	
Ω_3	Ω_4	дΩ

• reference problem

$$-\nabla \cdot I \nabla u(\boldsymbol{x}) = 0 \quad \boldsymbol{x} \in \Omega$$

Adopted from: Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator," by T. Gergelits et al.

Example 1: Mesh and solution

Adapted from: Convergence of Adaptive Finite Element Methods, by P. Morin, et al.

• condition number

$$\kappa(\mathbf{K}) = \lambda_N / \lambda_1$$

bound

$$\frac{\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}}{\|\mathbf{x} - \mathbf{x}_0\|_{\mathbf{K}}} \le 2\left(\frac{\sqrt{\kappa(\mathbf{K})} - 1}{\sqrt{\kappa(\mathbf{K})} + 1}\right)^k$$

• condition numbers

 $\kappa_{\rm ICHOL} \approx 16$ $\kappa_{\rm Laplace} \approx 161$

J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal., 4 (1967), pp. 10-26.

• condition number

$$\kappa(\mathbf{K}) = \lambda_N / \lambda_1$$

bound

$$\frac{\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}}{\|\mathbf{x} - \mathbf{x}_0\|_{\mathbf{K}}} \le 2\left(\frac{\sqrt{\kappa(\mathbf{K})} - 1}{\sqrt{\kappa(\mathbf{K})} + 1}\right)^k$$

• condition numbers

 $\kappa_{\rm ICHOL} \approx 16$ $\kappa_{\rm Laplace} \approx 161$

J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal., 4 (1967), pp. 10-26.

• condition number

$$\kappa(\mathbf{K}) = \lambda_N / \lambda_1$$

bound

$$\frac{\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}}{\|\mathbf{x} - \mathbf{x}_0\|_{\mathbf{K}}} \le 2\left(\frac{\sqrt{\kappa(\mathbf{K})} - 1}{\sqrt{\kappa(\mathbf{K})} + 1}\right)^k$$

• condition numbers

 $\kappa_{\rm ICHOL} \approx 16$ $\kappa_{\rm Laplace} \approx 161$

Adopted from: Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator," by T. Gergelits et al.

17 / 67 Martin Ladecký: Discrete Green's operator preconditioning: Theory and applications

Adopted from: Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator," by T. Gergelits et al.

$$\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}^2 = \|\mathbf{r}_0\|^2 \sum_{l=1}^N \omega_l \frac{(\varphi_k^{CG}(\lambda_l))^2}{\lambda_l}, \quad k = 1, 2, \dots$$

• first residual (right-hand side, initial guess)

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{K} \mathbf{x}_0$$

 $\omega_l = (\mathbf{r}_0, \boldsymbol{\phi}_l)$

- distribution of eigenvalues λ_1
- rounding errors (finite precision arithmetic)

 10^{0}

- $\mathbf{x}_k \|_A / \|\mathbf{x} - \mathbf{x}_0\|_A$ 10⁻⁵

×

Laplace

$$\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}^2 = \|\mathbf{r}_0\|^2 \sum_{l=1}^N \omega_l \frac{(\varphi_k^{CG}(\lambda_l))^2}{\lambda_l}, \quad k = 1, 2, \dots$$

• first residual (right-hand side, initial guess)

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{K} \mathbf{x}_0$$

 $\omega_l = (\mathbf{r}_0, \boldsymbol{\phi}_l)$

- distribution of eigenvalues λ_l
- rounding errors (finite precision arithmetic)

$$\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}^2 = \|\mathbf{r}_0\|^2 \sum_{l=1}^N \omega_l \frac{(\varphi_k^{CG}(\lambda_l))^2}{\lambda_l}, \quad k = 1, 2, \dots$$

• first residual (right-hand side, initial guess)

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{K} \mathbf{x}_0$$

 $\omega_l = (\mathbf{r}_0, \boldsymbol{\phi}_l)$

• distribution of eigenvalues λ_l

$$\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}^2 = \|\mathbf{r}_0\|^2 \sum_{l=1}^N \omega_l \frac{(\varphi_k^{CG}(\lambda_l))^2}{\lambda_l}, \quad k = 1, 2, \dots$$

• first residual (right-hand side, initial guess)

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{K} \mathbf{x}_0$$

 $\omega_l = (\mathbf{r}_0, \boldsymbol{\phi}_l)$

- distribution of eigenvalues λ_l
- rounding errors (finite precision arithmetic)

$$\|\mathbf{x} - \mathbf{x}_k\|_{\mathbf{K}}^2 = \|\mathbf{r}_0\|^2 \sum_{l=1}^N \omega_l \frac{(\varphi_k^{CG}(\lambda_l))^2}{\lambda_l}, \quad k = 1, 2, \dots$$

• first residual (right-hand side, initial guess)

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{K} \mathbf{x}_0$$

 $\omega_l = (\mathbf{r}_0, \boldsymbol{\phi}_l)$

• distribution of eigenvalues λ_l

Table of contents

Motivation

Introduction

Theory: Eigenvalues bounds

Scalar elliptic problems Elasticity problems Generalization

Applications: Computation homogenization

Fourier-Galerkin discretization Finite element discretization

Conclusions

Literature

Nielsen, Tveito, Hackbusch

2009 Preconditioning by inverting the Laplacian; an analysis of the eigenvalues

Gergelits, Mardal, Nielsen, Strakoš

2019 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator. 2020 Generalized spectrum of second order differential operators

2022 Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning

Ladecký, Pultarová, Zeman

- 2020 Guaranteed two-sided bounds on all eigenvalues of preconditioned diffusion and elasticity problems solved by the finite element method
- 2021 Two-sided guaranteed bounds to individual eigenvalues of preconditioned finite element and finite difference problems

Generalized eigenvalue problem

linear system matrix

κ

• eigenvalue problem

 $\mathbf{K}\boldsymbol{\phi}_k = \lambda_k \,\boldsymbol{\phi}_k, \quad k = 1, \dots, N$

• preconditioned linear system matrix

 ${({\mathbf{K}}^{\mathrm{ref}})}^{-1}{\mathbf{K}}$

• generalized eigenvalue problem

$$\mathbf{K}\boldsymbol{\phi}_k = \lambda_k \, \mathbf{K}^{\mathsf{ref}} \boldsymbol{\phi}_k, \quad k = 1, \dots, N$$

Eigenvalue bounds

• for every function φ_k having its support inside the patch \mathcal{P}_k

$$egin{aligned} \lambda_k^{\mathrm{L}} &= \operatorname*{ess\,inf}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \ \lambda_k^{\mathrm{U}} &= \operatorname*{ess\,sup}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\max}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \end{aligned}$$

• sort the two series non-decreasingly,

$$\begin{split} \left\{ \lambda_1^{\mathrm{L}}, \lambda_2^{\mathrm{L}}, \dots, \lambda_N^{\mathrm{L}} \right\} \to & \lambda_{r(1)}^{L} \leq \lambda_{r(2)}^{L} \leq \dots \leq \lambda_{r(N)}^{L} \\ \left\{ \lambda_1^{\mathrm{U}}, \lambda_2^{\mathrm{U}}, \dots, \lambda_N^{\mathrm{U}} \right\} \to & \lambda_{s(1)}^{U} \leq \lambda_{s(2)}^{U} \leq \dots \leq \lambda_{s(N)}^{U} \end{split}$$

Supports of φ_i and φ_j .

Generalized Rayleigh quotient bounds

Let $\mathbf{A}(\boldsymbol{x}), \mathbf{A}^{\mathsf{ref}}(\boldsymbol{x}) \in \mathbb{R}^{d \times d}$ be symmetric positive definite, then constants $0 < c_1 \leq c_2 < \infty$ bound the generalised Rayleigh quotient

$$c_1 \leq rac{oldsymbol{w}^T \mathbf{A}(oldsymbol{x}) oldsymbol{w}}{oldsymbol{w}^T \mathbf{A}^{\mathsf{ref}}(oldsymbol{x}) oldsymbol{w}} \leq c_2, \quad oldsymbol{x} \in \Omega, ext{ and } oldsymbol{w} \in \mathbb{R}^d, \ oldsymbol{w}
eq 0.$$
 (1)

Then for $u \in H^1_0(\Omega)$, by setting $\boldsymbol{w} = \nabla u$ and integrating over Ω , we get

$$c_1 \leq \frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \, \mathrm{d} \boldsymbol{x}}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\mathsf{ref}} \nabla u \, \mathrm{d} \boldsymbol{x}} \leq c_2.$$

Using $u = \sum_{i=1}^N \mathsf{v}_i \varphi_i$, we get

$$c_1 \leq \frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \, \mathrm{d} x}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\mathsf{ref}} \nabla u \, \mathrm{d} x} = \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}} \leq c_2, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}.$$

(2)

Courant-Fischer min-max theorem*

If $\mathbf{K}, \mathbf{K}^{\mathsf{ref}} \in \mathbb{R}^{N \times N}$ are symmetric positive definite, then

$$\lambda_j = \max_{S, \dim S = N - j + 1} \min_{\mathbf{v} \in S, \, \mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}},$$

where \overline{S} denotes a subspace of \mathbb{R}^N .

For
$$j = 1$$
 we have

$$\lambda_1 = \max_{S, \dim S = N} \min_{\mathbf{v} \in S, \, \mathbf{v} \neq 0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\text{ref}} \mathbf{v}} = \min_{\mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq 0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\text{ref}} \mathbf{v}}.$$

The next inequality follows from (1) and (2), such that

$$c_1 \leq \frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \, \mathrm{d} \boldsymbol{x}}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\mathsf{ref}} \nabla u \, \mathrm{d} \boldsymbol{x}} = \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}}, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}.$$

* e.g. Theorem 8.1.2 in G. H. Golub, Ch. F. Van Loan: Matrix Computations.

Generalized eigenvalues of material data

• material data

$$c_1 \leq rac{oldsymbol{w}^T \mathbf{A}(oldsymbol{x}) oldsymbol{w}}{oldsymbol{w}^T \mathbf{A}^{\mathsf{ref}}(oldsymbol{x}) oldsymbol{w}} \leq c_2, \quad oldsymbol{x} \in \Omega, ext{ and } oldsymbol{w} \in \mathbb{R}^d, \, oldsymbol{w}
eq \mathbf{0}$$

lower bound

$$\lambda_1^{\mathrm{L}} = \operatorname*{essinf}_{\boldsymbol{x} \in \Omega} \ \lambda_{\min} \left((\mathbf{A}^{\mathsf{ref}}(\boldsymbol{x}))^{-1} \mathbf{A}(\boldsymbol{x}) \right) \leq \min_{\boldsymbol{v} \in \mathbb{R}^N, \, \boldsymbol{v} \neq \boldsymbol{0}} \frac{\boldsymbol{v}^T \mathsf{K} \boldsymbol{v}}{\boldsymbol{v}^T \mathsf{K}^{\mathsf{ref}} \boldsymbol{v}} = \lambda_1$$

$$\lambda_{r(1)}^{\mathrm{L}} = \operatorname*{essinf}_{oldsymbol{x}\in\mathcal{P}_{r(1)}} \ \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight)$$

Courant–Fischer min-max theorem[†]

If $\mathbf{K}, \mathbf{K}^{\mathsf{ref}} \in \mathbb{R}^{N \times N}$ are symmetric positive definite, then

$$\lambda_j = \max_{S, \dim S = N - j + 1} \min_{\mathbf{v} \in S, \mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}},$$

where \overline{S} denotes a subspace of \mathbb{R}^N .

For
$$j = 1$$
 we have

$$\lambda_1 = \max_{S, \dim S = N} \min_{\mathbf{v} \in S, \, \mathbf{v} \neq 0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}} = \min_{\mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq 0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}}.$$

The next inequality follows from (1) and (2), such that

$$\lambda_{r(1)}^{\mathrm{L}} = \min_{\mathcal{P}_k \subset \Omega} \lambda_k^{\mathrm{L}} \leq \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}} = \frac{\int_{\Omega} \nabla u \cdot \mathbf{A} \nabla u \, \mathrm{d} \mathbf{x}}{\int_{\Omega} \nabla u \cdot \mathbf{A}^{\mathsf{ref}} \nabla u \, \mathrm{d} \mathbf{x}}, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}.$$

[†] e.g. Theorem 8.1.2 in G. H. Golub, Ch. F. Van Loan: Matrix Computations.

Courant-Fischer min-max theorem

If $\mathbf{K}, \mathbf{K}^{\mathsf{ref}} \in \mathbb{R}^{N imes N}$ are symmetric positive definite, then

$$\lambda_j = \max_{S, \dim S = N-j+1} \min_{\mathbf{v} \in S, \, \mathbf{v} \neq \mathbf{0}} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}},$$

where S denotes a subspace of \mathbb{R}^N .

 $\begin{array}{rcl} \text{For } j=2 \text{ we have} \\ \lambda_2 & = & \max_{S, \, \dim S=N-1} \, \min_{\mathbf{v} \in S, \, \mathbf{v} \neq 0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\text{ref}} \mathbf{v}} \geq \min_{\mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq 0, \, \mathbf{v}_{r(1)}=0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\text{ref}} \mathbf{v}} \end{array}$

The next inequality follows from (1) and (2),

$$\lambda_{r(2)}^{\mathrm{L}} = \min_{\mathcal{P}_k \subset \mathcal{D}} \lambda_k^{\mathrm{L}} \leq \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}} = \frac{\int_{\mathcal{D}} \nabla u \cdot \mathbf{A} \nabla u \, \mathrm{d} x}{\int_{\mathcal{D}} \nabla u \cdot \mathbf{A}^{\mathsf{ref}} \nabla u \, \mathrm{d} x}, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}, \, \mathbf{v}_{r(1)} = \mathbf{0}$$

where (due to $\mathbf{v}_{r(1)} = 0$) \mathcal{D} contains only the supports of φ_k , $k \neq r(1)$.
• Lower bounds:

 $\circ \ \lambda_{r(1)}^{L} \text{ found in } \boldsymbol{x}_{1} \\ \circ \ \lambda_{r(2)}^{L} \text{ found in } \boldsymbol{x}_{2} \\ \circ \ \lambda_{r(3)}^{L} \text{ found in } \boldsymbol{x}_{3} \\ \circ \ \lambda_{r(4)}^{L} \text{ found in } \boldsymbol{x}_{3}$

• Lower bounds:

 $\circ \ \ \lambda_{r(1)}^{L} \ \ \text{found in } \ \ x_{1} \\ \circ \ \ \lambda_{r(2)}^{L} \ \ \text{found in } \ \ x_{2} \\ \circ \ \ \lambda_{r(3)}^{L} \ \ \text{found in } \ \ x_{3} \\ \circ \ \ \lambda_{r(4)}^{L} \ \ \text{found in } \ \ x_{3} \\ \end{array}$

• Lower bounds:

 $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_3 \end{array} \end{array}$

• Lower bounds:

 $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_3 \end{array}$

• Lower bounds:

$$\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_3 \end{array}$$

Example 2: Continuous data

• material data:

$$\mathbf{A}(\boldsymbol{x}) = \begin{pmatrix} 1 & 0.3 \\ 0.3 & 1 \end{pmatrix} + \begin{pmatrix} 0.3 \sin(x_2) & 0.1 \cos(x_1) \\ 0.1 \cos(x_1) & 0.3 \sin(x_2) \end{pmatrix}$$

• reference data:

$$\mathbf{A}_1^{\mathsf{ref}}(\boldsymbol{x}) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \quad \mathsf{and} \quad \mathbf{A}_2^{\mathsf{ref}}(\boldsymbol{x}) = \left(\begin{array}{cc} 1 & 0.3 \\ 0.3 & 1 \end{array}\right)$$

Example 2: Discontinuous data

• material data:

$$\mathbf{A}(\boldsymbol{x}) = \begin{pmatrix} 1 & 0.3 \\ 0.3 & 1 \end{pmatrix} + \begin{pmatrix} 0.3 \operatorname{sgn}(x_2) & 0.1 \operatorname{cos}(x_1) \\ 0.1 \operatorname{cos}(x_1) & 0.3 \operatorname{sgn}(x_2) \end{pmatrix}$$

• reference data:

$$\mathbf{A}_1^{\mathsf{ref}}(oldsymbol{x}) = \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight)$$
 and $\mathbf{A}_2^{\mathsf{ref}}(oldsymbol{x}) = \left(egin{array}{cc} 1 & 0.3 \\ 0.3 & 1 \end{array}
ight)$

scalar multiple

$$oldsymbol{A}^{ref}(oldsymbol{x}) = aoldsymbol{A}(oldsymbol{x}) \quad oldsymbol{x} \in \mathcal{P}_k$$

$$egin{aligned} \lambda_k^{ ext{L}} &= \operatorname*{ess\,inf}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \ \lambda_k^{ ext{U}} &= \operatorname*{ess\,sup}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\max}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \end{aligned}$$

$$\overbrace{\left(\begin{array}{c} (\mathbf{A}^{\mathrm{ref}})^{-1} \\ 0 & 1 \end{array}\right)^{-1}}^{\mathbf{A}} \overbrace{\left(\begin{array}{c} 0.5 & 0 \\ 0 & 0.5 \end{array}\right)}^{\mathbf{A}} \longrightarrow 0.5 \quad 0.5$$

• scalar multiple

$$oldsymbol{A}^{ref}(oldsymbol{x}) = aoldsymbol{A}(oldsymbol{x}) \quad oldsymbol{x} \in \mathcal{P}_k$$

$$egin{aligned} \lambda_k^{ ext{L}} &= \operatorname*{ess\,inf}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \ \lambda_k^{ ext{U}} &= \operatorname*{ess\,sup}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\max}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \end{aligned}$$

$$\overbrace{\left(\begin{array}{cc} (\mathbf{A}^{\mathrm{ref}})^{-1} \\ \hline & & \\ \hline & & \\ 0 & 1 \end{array}\right)^{-1}}^{\left(\begin{array}{cc} \mathbf{A} \\ \hline & & \\ 0 & 0.5 \end{array}\right)} \xrightarrow{\mathbf{A}} 0.5 \quad 0.5$$

• scalar multiple

$$oldsymbol{A}^{ref}(oldsymbol{x}) = aoldsymbol{A}(oldsymbol{x}) \quad oldsymbol{x} \in \mathcal{P}_k$$

$$egin{aligned} &\lambda_k^{\mathrm{L}} = \operatorname*{ess\,inf}_{oldsymbol{x}\in\mathcal{P}_k} \ \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \ &\lambda_k^{\mathrm{U}} = \operatorname*{ess\,sup}_{oldsymbol{x}\in\mathcal{P}_k} \ \lambda_{\max}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \end{aligned}$$

$$\overbrace{\left(\begin{array}{c} \mathbf{A}^{\mathrm{ref}}\right)^{-1}}^{\left(\mathbf{A}^{\mathrm{ref}}\right)^{-1}} \overbrace{\left(\begin{array}{c} 0.5 & 0\\ 0 & 0.5 \end{array}\right)}^{\mathbf{A}} \longrightarrow 0.5 \quad 0.5$$

Example 3: Scalar multiple

•
$$\mathbf{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Example 3: Scalar multiple

•
$$\boldsymbol{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\boldsymbol{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Example 3: Scalar multiple

•
$$\mathbf{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

•
$$\boldsymbol{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\boldsymbol{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

•
$$\mathbf{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\mathbf{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\mathbf{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

•
$$\boldsymbol{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\boldsymbol{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

•
$$\boldsymbol{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\boldsymbol{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

scalar multiple

$$oldsymbol{A}^{ref}(oldsymbol{x})
eq aoldsymbol{A}(oldsymbol{x}) \qquad oldsymbol{x}\in\mathcal{P}_k$$

$$egin{aligned} \lambda_k^{\mathrm{L}} &= \operatorname*{ess\,inf}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \ \lambda_k^{\mathrm{U}} &= \operatorname*{ess\,sup}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\max}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \end{aligned}$$

scalar multiple

$$oldsymbol{A}^{ref}(oldsymbol{x})
eq aoldsymbol{A}(oldsymbol{x}) \qquad oldsymbol{x}\in\mathcal{P}_k$$

$$egin{aligned} \lambda_k^{\mathrm{L}} &= \operatorname*{ess\,inf}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \ \lambda_k^{\mathrm{U}} &= \operatorname*{ess\,sup}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\max}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \end{aligned}$$

scalar multiple

$$oldsymbol{A}^{ref}(oldsymbol{x})
eq aoldsymbol{A}(oldsymbol{x}) \qquad oldsymbol{x}\in\mathcal{P}_k$$

$$egin{aligned} \lambda_k^{\mathrm{L}} &= \operatorname*{ess\,inf}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\min}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \ \lambda_k^{\mathrm{U}} &= \operatorname*{ess\,sup}_{oldsymbol{x}\in\mathcal{P}_k} \; \lambda_{\max}\left((\mathbf{A}^{\mathsf{ref}}(oldsymbol{x}))^{-1}\mathbf{A}(oldsymbol{x})
ight) \end{aligned}$$

Example 4

•
$$\boldsymbol{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\boldsymbol{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

35 / 67 Martin Ladecký: Discrete Green's operator preconditioning: Theory and applications

Example 4

•
$$\boldsymbol{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1.5 \end{pmatrix}$ $\boldsymbol{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

Example 4

•
$$\boldsymbol{A}^{ref} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $\boldsymbol{A}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1.5 \end{pmatrix}$ $\boldsymbol{A}_2 = \begin{pmatrix} 2 & 0 \\ 0 & 1.8 \end{pmatrix}$

$$\mathbf{A}^{\mathsf{ref}} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)$$

$$\mathbf{A}^{\mathsf{ref}} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right)$$

$$\mathbf{A}^{\mathsf{ref}} = \mathbf{A}_1 = \left(\begin{array}{cc} 0.7 & 0.2\\ 0.2 & 0.7 \end{array}\right)$$

$$\mathbf{A}^{\mathsf{ref}} = \mathbf{A}_2 = \left(\begin{array}{cc} 0.7 & 0.4\\ 0.4 & 0.7 \end{array}\right)$$

A_2 (0.27 0.73)	A_1 (0.45 0.6)
Α ₃ (1.0 1.0) Ω	A ₄ (0.82 1.13)

$$\mathbf{A}^{\mathsf{ref}} = \mathbf{A}_3 = \left(\begin{array}{cc} 1.3 & 0.2\\ 0.2 & 1.3 \end{array}\right)$$

A_2 (0.33 0.65)	A_1 (0.53 0.55)
Α ₃ (0.88 1.2) Ω	A_4 (1.0 1.0)

$$\mathbf{A}^{\mathsf{ref}} = \mathbf{A}_4 = \left(\begin{array}{cc} 1.3 & 0.4\\ 0.4 & 1.3 \end{array}\right)$$

Small-strain elasticity

• governing equation

$$-\partial^{\mathsf{T}} \mathbf{C}(\boldsymbol{x}) \partial \boldsymbol{u}(\boldsymbol{x}) = \boldsymbol{F}(\boldsymbol{x}) \quad \boldsymbol{x} \in \Omega$$

• original system matrix

$$\mathbf{K} = \int_{\Omega} oldsymbol{\partial} oldsymbol{v}^T \mathbf{C} oldsymbol{\partial} oldsymbol{u} \, \mathrm{d} oldsymbol{x}$$

$$\mathbf{K}^{\mathsf{ref}} = \int_{\Omega} \partial \boldsymbol{v}^T \mathbf{C}^{\mathsf{ref}} \partial \boldsymbol{u} \, \mathrm{d} \boldsymbol{x}$$

• approximation

$$u_lpha(oldsymbol{x})pprox u^N_lpha(oldsymbol{x}) = \sum_{I=1}^N u^N_lpha(oldsymbol{x}^I_{\mathrm{n}}) arphi^I(oldsymbol{x})$$

• Lower bounds:

 $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(7)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \end{array}$

• Lower bounds: • $\lambda_{r(1)}^{L}$ found in x_1 • $\lambda_{r(2)}^{L}$ found in x_1 • $\lambda_{r(3)}^{L}$ found in x_2 • $\lambda_{r(4)}^{L}$ found in x_2 • $\lambda_{r(5)}^{L}$ found in x_3 • $\lambda_{r(6)}^{L}$ found in x_3 • $\lambda_{r(7)}^{L}$ found in x_3 • $\lambda_{r(8)}^{L}$ found in x_3

- Lower bounds:
 - $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(7)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \end{array}$

- Lower bounds:
 - $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(7)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \end{array}$

- Lower bounds:
 - $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(7)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \end{array}$

- Lower bounds:
 - $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(7)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \end{array}$

- Lower bounds:
 - $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \end{array}$

- Lower bounds:
 - $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } x_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } x_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(7)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } x_3 \\ \end{array}$

- Lower bounds:
 - $\begin{array}{l} \circ \ \lambda_{r(1)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_1 \\ \circ \ \lambda_{r(2)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_1 \\ \circ \ \lambda_{r(3)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_2 \\ \circ \ \lambda_{r(4)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_2 \\ \circ \ \lambda_{r(5)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_3 \\ \circ \ \lambda_{r(6)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_3 \\ \circ \ \lambda_{r(7)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_3 \\ \circ \ \lambda_{r(8)}^{\rm L} \ {\rm found \ in \ } {\boldsymbol x}_3 \\ \end{array}$

Example 6: Elasticity

$$\boldsymbol{C}(\boldsymbol{x}) = \frac{E(\boldsymbol{x})}{(1+\nu)(1-2\nu)} \begin{pmatrix} 1-\nu & \nu & 0\\ \nu & 1-\nu & 0\\ 0 & 0 & 0.5-\nu \end{pmatrix}, \quad \nu = 0.2.$$

E = 0.7	E = 1.3	
E = 1.3 Ω	E = 0.7	$\partial \Omega$

 $\mathbf{C}_1^{\mathsf{ref}}: \{E=1, \nu_1=0\} \text{ and } \mathbf{C}_2^{\mathsf{ref}}: \{E=1, \nu_1=0.2\}$

Material data in quadrature points

• quadrature

$$\int_{\Omega} \partial \tilde{\boldsymbol{v}}(\boldsymbol{x})^{\mathsf{T}} \mathbf{C}^{\mathsf{ref}}(\boldsymbol{x}) \partial \boldsymbol{u}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \approx \sum_{Q=1}^{N_{\mathrm{Q}}} \partial \tilde{\boldsymbol{v}}(\boldsymbol{x}_{\mathrm{q}}^{Q})^{\mathsf{T}} \mathbf{C}^{\mathsf{ref}}(\boldsymbol{x}_{\mathrm{q}}^{Q}) \partial \boldsymbol{u}(\boldsymbol{x}_{\mathrm{q}}^{Q}) \, w^{Q}$$

• bounds over quadrature points

$$\lambda_k^{\mathrm{L}} = \min_{\boldsymbol{x}_q^Q \in \mathrm{supp} \, \varphi^k} \lambda_{\min} \left((\mathbf{C}^{\mathsf{ref}}(\boldsymbol{x}_q^Q))^{-1} \mathbf{C}(\boldsymbol{x}_q^Q) \right), \quad k = 1, \dots, dN$$
$$\lambda_k^{\mathrm{U}} = \max_{\boldsymbol{x}_q^Q \in \mathrm{supp} \, \varphi^k} \lambda_{\max} \left((\mathbf{C}^{\mathsf{ref}}(\boldsymbol{x}_q^Q))^{-1} \mathbf{C}(\boldsymbol{x}_q^Q) \right), \quad k = 1, \dots, dN$$

Implementation per elements

• compute bounds for every element

$$c_1 \leq rac{oldsymbol{w}^T \mathbf{A}(oldsymbol{x}) oldsymbol{w}}{oldsymbol{w}^T \mathbf{A}^{\mathsf{ref}}(oldsymbol{x}) oldsymbol{w}} \leq c_2, \quad oldsymbol{x} \in \mathbf{\Omega}^e, ext{ and } oldsymbol{w} \in \mathbb{R}^d, \, oldsymbol{w}
eq \mathbf{0}, e = 1, \dots, N_{\mathrm{e}}$$

• bounds on local matrices

$$c_1 \leq \frac{\mathbf{v}^T \mathbf{K}_e \mathbf{v}}{\mathbf{v}^T \mathbf{K}_e^{\mathsf{ref}} \mathbf{v}} = \frac{\int_{\mathbf{\Omega}^e} \nabla u \cdot \mathbf{A} \nabla u \, \mathrm{d} \mathbf{x}}{\int_{\mathbf{\Omega}^e} \nabla u \cdot \mathbf{A}^{\mathsf{ref}} \nabla u \, \mathrm{d} \mathbf{x}} \leq c_2$$

• local matrices $\mathbf{K}_e \in \mathbb{R}^{N \times N}$ and $\mathbf{K}_e^{\mathsf{ref}} \in \mathbb{R}^{N \times N}$

$$\mathsf{K} = \sum_{e=1}^{N_{\mathsf{e}}} \mathsf{K}_{e}, \quad \mathsf{K}^{\mathsf{ref}} = \sum_{e=1}^{N_{\mathsf{e}}} \mathsf{K}_{e}^{\mathsf{ref}}$$

Bounds from local matrices

• lower bound on the first eigenvalue

$$\mathbf{v}^T \mathbf{K} \mathbf{v} \geq \lambda_1^{\mathrm{L}} \, \mathbf{v}^T \mathbf{K}^{\mathrm{ref}} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}$$

• equivalently in the sum form

$$\sum_{e=1}^{N_{\rm e}} \mathbf{v}^T \mathbf{K}_e \mathbf{v} \geq \lambda_1^{\rm L} \, \sum_{e=1}^{N_{\rm e}} \mathbf{v}^T \mathbf{K}_e^{\rm ref} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}$$

• sufficient condition

$$\mathbf{v}^T \mathbf{K}_e \mathbf{v} \geq \lambda_1^{\mathrm{L}} \, \mathbf{v}^T \mathbf{K}_e^{\mathrm{ref}} \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}, e = 1, \dots, N_{\mathrm{e}}$$

Courant–Fischer min-max theorem

• Courant-Fischer min-max principle

$$\lambda_2 \quad = \quad \max_{S, \, \dim S = N-1} \, \min_{\mathbf{v} \in S, \, \mathbf{v} \neq 0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}} \geq \min_{\mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq 0, \, \mathbf{v}_{r(1)} = 0} \frac{\mathbf{v}^T \mathbf{K} \mathbf{v}}{\mathbf{v}^T \mathbf{K}^{\mathsf{ref}} \mathbf{v}}$$

• any $\lambda_2^{\mathsf{L}} \in \mathbb{R}$ such that

$$\mathbf{v}^T \mathbf{K} \mathbf{v} \geq \lambda_2^{\mathrm{L}} \, \mathbf{v}^T \mathbf{K}^{\mathrm{ref}} \mathbf{v}, \qquad \mathbf{v} \in \mathbb{R}^N, \; \mathbf{v}_{r(1)} = 0$$

is a lower bound to λ_2 .

• sufficient condition

$$\mathbf{v}^T \mathbf{K}_e \mathbf{v} \geq \lambda_2^{\mathrm{L}} \, \mathbf{v}^T \mathbf{K}_e^{\mathrm{ref}} \mathbf{v}, \quad e = 1, \dots, N_{\mathrm{e}}, \quad \mathbf{v} \in \mathbb{R}^N, \, \mathbf{v} \neq \mathbf{0}, \mathbf{v}_{r(1)} = 0$$

Generalized bounds

• locally assembled system matrices

$$\mathbf{K} = \sum_{e=1}^{N_{\mathrm{e}}} \mathbf{K}_{e}$$
 $\mathbf{K}^{\mathrm{ref}} = \sum_{e=1}^{N_{\mathrm{e}}} \mathbf{K}^{\mathrm{ref}}_{e}$

- can be applied to:
 - \circ finite difference
 - \circ stochastic Galerkin FE method
 - algebraic multilevel preconditioning
 - $\circ~$ discontinuous Galerkin

Note that symmetric positive semi-definite $K_e \in \mathbb{R}^{N imes N}$ and $K_e^{\text{ref}} \in \mathbb{R}^{N imes N}$ must have the same kernels.

Example 7: Finite difference 1

• material data:

$$\mathbf{A}(\boldsymbol{x}) = \left(1 + 0.3\cos\left((x_1 + x_2)\frac{\pi}{2}\right)\right) \left(\begin{array}{cc}1 & 0.3\\0.3 & 1\end{array}\right)$$

• reference data:

$$\mathbf{A}_1^{\mathsf{ref}} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right), \quad \mathsf{and} \quad \mathbf{A}_2^{\mathsf{ref}} = \left(\begin{array}{cc} 1 & 0.3\\ 0.3 & 1 \end{array}\right)$$

Table of contents

Motivation

Introduction

Theory: Eigenvalues bounds

Scalar elliptic problems Elasticity problems Generalization

Applications: Computation homogenization

Fourier-Galerkin discretization Finite element discretization

Conclusions

Preconditioned conjugate gradients

• preconditioned system

$$\left(\mathbf{K}^{\mathsf{ref}}
ight)^{-1}\mathbf{K}\mathbf{u}=\left(\mathbf{K}^{\mathsf{ref}}
ight)^{-1}\mathbf{b}$$

• additional system

$$\mathbf{K}^{\mathsf{ref}}\mathbf{z}_k = \mathbf{r}_k$$

1: procedure PCG(
$$u_0, K, b, M, tol, it_{max}$$
)
2: $r_0 := b - Ku_0$
3: $z_0 := M^{-1}r_0$
4: $nr_0 := ||r_0||$
5: $p_0 := z_0$
6: while $k \le it_{max}$ do
8: $Kp_k = Kp_k$
9: $\alpha_k = \frac{r_k^T z_k}{p_k^T Kp_k}$
10: $\delta \tilde{u}_{k+1} = \delta \tilde{u}_k + \alpha_k p_k$
11: $r_{k+1} = r_k - \alpha_k Kp_k$
12: $z_{k+1} = M^{-1}r_{k+1}$
13: $nr_{k+1} = ||r_{k+1}||$
14: if $\frac{nr_{k+1}}{nr_0} < tol$ then
15: return u_{k+1}
16: $\beta_k = \frac{r_{k+1}^T k_{k+1}}{r_k^T z_k}$
17: $p_{k+1} = z_{k+1} + \beta_k p_k$
18: $k = k + 1$
20: return u_k

⊳ initial residual

 $\triangleright k = 0, 1, \dots, it_{max}$

• governing equation

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) = 0 \quad \boldsymbol{x} \in \mathcal{Y}$$
periodic B.C.

• overall gradient field

$$egin{aligned}
abla u(oldsymbol{x}) = oldsymbol{e} +
abla ilde{u}(oldsymbol{x}) & oldsymbol{x} \in \mathcal{Y} \ oldsymbol{e} = rac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}}
abla u(oldsymbol{x}) \, \mathrm{d}oldsymbol{x} \in \mathbb{R}^d \end{aligned}$$

• homogenized (constant) material data

$$\mathbf{A}_{\mathrm{H}} \boldsymbol{e} = rac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \mathbf{A}(\boldsymbol{x}) (\boldsymbol{e} + \nabla \tilde{u}(\boldsymbol{x})) \,\mathrm{d}\boldsymbol{x}$$

A rectangular cell with outlined periodic microstructure.

• governing equation

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) = 0 \quad \boldsymbol{x} \in \mathcal{Y}$$
periodic B.C.

• overall gradient field

$$egin{aligned}
abla u(oldsymbol{x}) = oldsymbol{e} +
abla ilde{u}(oldsymbol{x}) & oldsymbol{x} \in \mathcal{Y} \ oldsymbol{e} = rac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}}
abla u(oldsymbol{x}) \, \mathrm{d}oldsymbol{x} \in \mathbb{R}^d \end{aligned}$$

$$\mathbf{A}_{\mathrm{H}} oldsymbol{e} = rac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \mathbf{A}(oldsymbol{x}) (oldsymbol{e} +
abla ilde{u}(oldsymbol{x})) \,\mathrm{d}oldsymbol{x}$$

• governing equation

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x}) \nabla u(\boldsymbol{x}) = 0 \quad \boldsymbol{x} \in \mathcal{Y}$$
periodic B.C.

• overall gradient field

$$egin{aligned}
abla u(oldsymbol{x}) = oldsymbol{e} +
abla ilde{u}(oldsymbol{x}) & oldsymbol{x} \in \mathcal{Y} \ oldsymbol{e} = rac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}}
abla u(oldsymbol{x}) \, \mathrm{d}oldsymbol{x} \in \mathbb{R}^d \end{aligned}$$

• homogenized (constant) material data

$$\mathbf{A}_{\mathrm{H}} \boldsymbol{e} = rac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \mathbf{A}(\boldsymbol{x}) (\boldsymbol{e} +
abla ilde{u}(\boldsymbol{x})) \, \mathrm{d} \boldsymbol{x}$$

• governing equation

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x})(\boldsymbol{e} + \nabla \tilde{\boldsymbol{u}}(\boldsymbol{x})) = 0 \quad \boldsymbol{x} \in \mathcal{Y}$$

• weak form

$$\int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla \tilde{u}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \boldsymbol{e} \, \mathrm{d}\boldsymbol{x} \quad \tilde{v} \in \mathcal{V}$$

• system matrix

$$\mathbf{K}[j,i] = \int_{\mathcal{Y}} \nabla \varphi_j(\boldsymbol{x})^{\mathsf{T}} \mathbf{A} \nabla \varphi_i(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x}$$

$$\mathcal{V} = \left\{ \tilde{v} : H_{per}^{1}(\mathcal{Y}), \int_{\mathcal{Y}} \tilde{v}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = 0 \right\}$$

• governing equation

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x})(\boldsymbol{e} + \nabla \tilde{u}(\boldsymbol{x})) = 0 \quad \boldsymbol{x} \in \mathcal{Y}$$

• weak form

$$\int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla \tilde{u}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \boldsymbol{e} \, \mathrm{d}\boldsymbol{x} \quad \tilde{v} \in \mathcal{V}$$

• system matrix

$$\mathbf{K}[j,i] = \int_{\mathcal{Y}} \nabla \varphi_j(\boldsymbol{x})^{\mathsf{T}} \mathbf{A} \nabla \varphi_i(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x}$$

$$\mathcal{V} = \left\{ \tilde{v} : H_{per}^{1}(\mathcal{Y}), \int_{\mathcal{Y}} \tilde{v}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = 0 \right\}$$

governing equation

$$-\nabla \cdot \mathbf{A}(\boldsymbol{x})(\boldsymbol{e} + \nabla \tilde{\boldsymbol{u}}(\boldsymbol{x})) = 0 \quad \boldsymbol{x} \in \mathcal{Y}$$

• weak form

$$\int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \nabla \tilde{u}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{\mathcal{Y}} \nabla \tilde{v}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}(\boldsymbol{x}) \boldsymbol{e} \, \mathrm{d}\boldsymbol{x} \quad \tilde{v} \in \mathcal{V}$$

• system matrix

$$\mathbf{K}[j,i] = \int_{\mathcal{Y}} \nabla \varphi_j(\boldsymbol{x})^{\mathsf{T}} \mathbf{A} \nabla \varphi_i(\boldsymbol{x}) \, \mathrm{d} \boldsymbol{x}$$

$$\begin{array}{c|c} & x_2 \\ & \frac{l_2}{2} \\ \hline \\ -\frac{l_1}{2} \\ y \\ y \\ -\frac{l_2}{2} \end{array} \begin{array}{c} 0 \\ \frac{l_1}{2} \\ \frac{l_2}{2} \\ x_1 \\ -\frac{l_2}{2} \end{array}$$

$$\mathcal{V} = \left\{ \tilde{v} : H_{per}^{1}(\mathcal{Y}), \, \int_{\mathcal{Y}} \tilde{v}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = 0 \right\}$$

Fourier-Galerkin method

- regular (pixel/voxel) data structure
- Fourier-basis

$$ilde{u}(oldsymbol{x}) pprox \sum_{i=0}^{N} \widehat{u}_i arphi_i^{FG}(oldsymbol{x}) = \sum_{i=0}^{N} \widehat{u}_i \exp(2\pi \mathrm{i}oldsymbol{k}_i oldsymbol{x})$$
 $abla \widetilde{u}(oldsymbol{x}) pprox \sum_{i=0}^{N} \widehat{u}_i
abla arphi_i^{FG}(oldsymbol{x}) = \sum_{i=0}^{N} 2\pi \mathrm{i}oldsymbol{k}_i \,\widehat{u}_i \,\exp(2\pi \mathrm{i}oldsymbol{k}_i oldsymbol{x})$

• linear system with Fourier coefficient

$$\mathbf{F}^{\mathsf{H}}\widehat{\mathbf{K}}\mathbf{F}\widetilde{\mathbf{u}} = \mathbf{b}$$
 $\widehat{\mathbf{u}} = \mathbf{F}\widetilde{\mathbf{u}}$

Fourier-Galerkin method: Homogeneous reference data

• closed-form expression

$$\widehat{\mathbf{K}}^{\mathsf{ref}}[j,i] = \int_{\mathcal{Y}} \nabla \varphi_j^{FG}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}^{\mathsf{ref}} \nabla \varphi_i^{FG}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \begin{cases} \boldsymbol{k}_j^{\mathsf{T}} \mathbf{A}^{\mathsf{ref}} \boldsymbol{k}_i & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

+ $\widehat{\mathbf{K}}^{\text{ref}}$ is block diagonal in the Fourier space

$${(\mathbf{K}^{\mathrm{ref}})}^{-1} = \mathbf{F}^{\mathrm{H}}{(\widehat{\mathbf{K}}^{\mathrm{ref}})}^{-1}\mathbf{F}$$

• accelerated by FFT

$$\underbrace{\mathcal{F}^{-1}(\widehat{\mathbf{K}}^{\mathsf{ref}})^{-1}\mathcal{F}}_{(\mathbf{K}^{\mathsf{ref}})^{-1}}\mathbf{K}\widetilde{\mathbf{u}} = \underbrace{\mathcal{F}^{-1}(\widehat{\mathbf{K}}^{\mathsf{ref}})^{-1}\mathcal{F}}_{(\mathbf{K}^{\mathsf{ref}})^{-1}}\mathbf{b}$$

Fourier-Galerkin method: Heat conduction

Oscillations

Damage fields in concrete

Finite element method: discretisation grids

• no (simple) closed-form expression

$$\widehat{\mathbf{K}}^{\mathsf{ref}}[j,i] = \int_{\mathcal{Y}} \nabla \varphi_j^{FE}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}^{\mathsf{ref}} \nabla \varphi_i^{FE}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \neq \begin{cases} \boldsymbol{k}_j^{\mathsf{T}} \mathbf{A}^{\mathsf{ref}} \boldsymbol{k}_i & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

• $\widehat{\mathbf{K}}^{\mathrm{ref}}$ is diagonal

$$(\mathbf{K}^{\mathsf{ref}})^{-1} = \mathbf{F}_d^{\mathsf{H}} (\widehat{\mathbf{K}}^{\mathsf{ref}})^{-1} \mathbf{F}_d.$$

• no (simple) closed-form expression

$$\widehat{\mathbf{K}}^{\mathsf{ref}}[j,i] = \int_{\mathcal{Y}} \nabla \varphi_j^{FE}(\boldsymbol{x})^{\mathsf{T}} \mathbf{A}^{\mathsf{ref}} \nabla \varphi_i^{FE}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \neq \begin{cases} \boldsymbol{k}_j^{\mathsf{T}} \mathbf{A}^{\mathsf{ref}} \boldsymbol{k}_i & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

• $\widehat{\mathbf{K}}^{\text{ref}}$ is diagonal

$$\left(\mathbf{K}^{\mathrm{ref}}\right)^{-1} = \mathbf{F}_{d}^{\mathrm{H}} (\widehat{\mathbf{K}}^{\mathrm{ref}})^{-1} \mathbf{F}_{d}.$$

The block-circulant structure of \mathbf{K}^{ref}

ECH TECHNIC

• $\widehat{\mathbf{K}}^{\mathsf{ref}}$ is diagonal

$${(\mathbf{K}^{\mathrm{ref}})}^{-1} = \mathbf{F}_d^{\mathsf{H}} {(\widehat{\mathbf{K}}^{\mathrm{ref}})}^{-1} \mathbf{F}_d.$$

• unit impulse

$$\widehat{\mathsf{K}}^{\mathsf{ref}}[:,1] = \widehat{\mathsf{K}}^{\mathsf{ref}} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

diagonal

$$\mathsf{diag}(\widehat{\mathbf{K}}^{\mathsf{ref}}) = \mathcal{F}(\widehat{\mathbf{K}}^{\mathsf{ref}}[:,1])$$

• $\widehat{\mathbf{K}}^{\text{ref}}$ is diagonal

$${(\mathbf{K}^{\mathrm{ref}})}^{-1} = \mathbf{F}_d^{\mathsf{H}} {(\widehat{\mathbf{K}}^{\mathrm{ref}})}^{-1} \mathbf{F}_d.$$

• unit impulse

$$\widehat{\mathbf{K}}^{\mathsf{ref}}[:,1] = \widehat{\mathbf{K}}^{\mathsf{ref}} \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}$$

diagonal

 $\mathsf{diag}(\widehat{\mathbf{K}}^{\mathsf{ref}}) = \mathcal{F}(\widehat{\mathbf{K}}^{\mathsf{ref}}[:,1])$

• $\widehat{\mathbf{K}}^{\text{ref}}$ is diagonal

$${(\mathbf{K}^{\mathrm{ref}})}^{-1} = \mathbf{F}_d^{\mathsf{H}} {(\widehat{\mathbf{K}}^{\mathrm{ref}})}^{-1} \mathbf{F}_d.$$

E 4 **D**

• unit impulse

$$\widehat{\mathbf{K}}^{\mathsf{ref}}[:,1] = \widehat{\mathbf{K}}^{\mathsf{ref}} \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}$$

diagonal

 $\mathsf{diag}(\widehat{\mathbf{K}}^{\mathsf{ref}}) = \mathcal{F}(\widehat{\mathbf{K}}^{\mathsf{ref}}[:,1])$

Example 9: Grid size independence - elasticity

Example 9: Scaling

DB -displacement-based formulation, SB-strain-based formulation

60 / 67 Martin Ladecký: Discrete Green's operator preconditioning: Theory and applications

Example 9: Choice of reference material

Example 10: Choice of reference material

	\mathbf{C}^{ref}	Fourier	linear FE	bilinear FE
Newton		11	9	10
	Ι	1012	861	761
(P)CG	I_s	781	609	540
	\mathbf{C}_{mean}^{ref}	585	457	407

Example 11: Damage in concrete – bilinear FE

Example 11: Damage in concrete – under-integrated bilinear FE

Example 11: Damage in concrete – linear FE

Example 11: Damage in concrete – isotropic mesh

Table of contents

Motivation

Introduction

Theory: Eigenvalues bounds

Scalar elliptic problems Elasticity problems Generalization

Applications: Computation homogenization

Fourier-Galerkin discretization Finite element discretization

Conclusions

The discrete Green's (Laplace) operator preconditioning makes condition number independent of mesh size. Additionally, the distribution of eigenvalues can be estimated and optimized.

Collaborations

- Eigenvalues bounds
- FFT-based FE solvers

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Outlook & Support

Outlook:

- improve eigenvalues bounds
- PCG convergence estimate for homogenization

Thanks for financial support:

- GAČR: 23-049030 (Ladecký), GA20-14736S (Krejčí), GC17-04150J (Zeman)
- CAAS: CZ.02.1.01/0.0/0.0/16_019/0000778-01 (Jirásek, Bobok)
- SGS: SGS21/003-, SGS20/002-, SGS19/002-, SGS18/005-/OHK1/1T/11

Outlook & Support

Outlook:

- improve eigenvalues bounds
- PCG convergence estimate for homogenization

Thanks for financial support:

- GAČR: 23-049030 (Ladecký), GA20-14736S (Krejčí), GC17-04150J (Zeman)
- CAAS: CZ.02.1.01/0.0/0.0/16_019/0000778-01 (Jirásek, Bobok)
- SGS: SGS21/003-, SGS20/002-, SGS19/002-, SGS18/005-/OHK1/1T/11

