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Two-scale material analysis

Adopted from: Multiscale Computational Homogenization. F. Otero et al., Archives of Computational Methods in Engineering (2018)
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Adapted from: Computational Homogenization of Polycrystals, J. Segurado et al. Advances in Applied Mechanics (2018)
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Time consumption

Adopted from: A variational fast Fourier transform method for phase-transforming materials,” by A. Cruzado et al.

Modelling and Simulation in Materials Science and Engineering (2021). Solved using Abaqus FEA software suite (formerly ABAQUS)
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Grid size independence
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The basic scheme
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8 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Model problem

• elliptic problem

−∇ ·A(x)∇u(x) = f(x) x ∈ Ω

u(x) = 0 x ∈ ∂Ω

• weak form∫
Ω

∇v(x)TA(x)∇u(x) dx =

∫
Ω

v(x)Tf(x) dx v ∈ V

• approximation

u(x) ≈ uN (x) =

N∑
i=1

uN (xn
i )φi(x)

∂ΩΩ
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System of linear equations

Ku = b

• linear system matrix

K[j, i] =

∫
Ω

∇φj(x)
TA(x)∇φi(x) dx

• unknown

u[i] = uN (xn
i )

• right-hand side

b[j] =

∫
Ω

φj(x)f(x) dx
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Preconditioning

• preconditioned system

M−1Ku = M−1b

• preconditioner

M−1K ≈ I

• symmetric form

M−1/2KM−1/2z = M−1/2b, z = M1/2u

1: procedure PCG(u0, K, b,M, tol, itmax)

2: r0 := b − Ku0

3: z0 := M−1r0

4: nr0 := ∥r0∥ ▷ initial residual

5: p0 := z0
6:
7: while k ≤ itmax do ▷ k = 0, 1, ..., itmax

8: Kpk = Kpk

9: αk =
r⊤k zk

p⊤
k

Kpk

10: δũk+1 = δũk + αkpk

11: rk+1 = rk − αkKpk

12: zk+1 = M−1rk+1

13: nrk+1 =
∥∥∥rk+1

∥∥∥
14: if

nrk+1
nr0

< tol then

15: return uk+1

16: βk =
r⊤k+1zk+1

r⊤
k

zk

17: pk+1 = zk+1 + βkpk

18:
19: k = k + 1

20: return uk
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Preconditioning approaches

• diagonal scaling or Jacobi

M = diag(K)

• incomplete Cholesky or LU factorization

M ≈ LLT

...

• operator (Laplace, discrete Green’s) preconditioning

M−1 =

K
−1
1,1 0

. . .

0 K−1
N,N



LT =


× × 0 0 ×

× × × 0
× × 0

0 × ×
×
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Discrete Green’s operator preconditioning

• original problem

K =

∫
Ω

∇v(x)TA(x)∇u(x) dx

• reference problem

Kref =

∫
Ω

∇v(x)TAref(x)∇u(x) dx

∂Ω
Ω

∂ΩΩ

• discrete Green’s (Laplace) operator preconditioned linear system

(Kref)
−1

Ku = (Kref)
−1

b
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Example 1: Setting

• original problem

−∇ ·A(x)∇u(x) = 0 x ∈ Ω

A(x) = 161.45

(
1 0
0 1

)
x ∈ Ω1,3

A(x) = 1

(
1 0
0 1

)
x ∈ Ω2,4

• reference problem

−∇ · I∇u(x) = 0 x ∈ Ω

∂Ω

Ω4

Ω2 Ω1

Ω

Ω3

Adopted from: Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator,” by T. Gergelits et al.

14 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Example 1: Mesh and solution
650 PEDRO MORIN, RICARDO H. NOCHETTO, AND KUNIBERT G. SIEBERT

Fig. 5.10 Example 5.3: Final grid (full grid with < 2000 nodes) (top left), zooms to (−10−3, 10−3)2

(top right), (−10−6, 10−6)2 (bottom left), and (−10−9, 10−9)2 (bottom right).

Fig. 5.11 Example 5.3: Graph of the discrete solution, which is ≈ r0.1, and underlying grid.

650PEDROMORIN,RICARDOH.NOCHETTO,ANDKUNIBERTG.SIEBERT

Fig.5.10Example5.3:Finalgrid(fullgridwith<2000nodes)(topleft),zoomsto(−10−3,10−3)2

(topright),(−10−6,10−6)2(bottomleft),and(−10−9,10−9)2(bottomright).

Fig.5.11Example5.3:Graphofthediscretesolution,whichis≈r0.1,andunderlyinggrid.
Adapted from: Convergence of Adaptive Finite Element Methods, by P. Morin, et al.
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Example 1: Convergence

• condition number

κ(K) = λN/λ1

• bound

∥x− xk∥K
∥x− x0∥K

≤ 2

(√
κ(K)− 1√
κ(K) + 1

)k

• condition numbers

κICHOL ≈ 16

κLaplace ≈ 161

J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal., 4 (1967), pp. 10–26.
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Adopted from: Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator,” by T. Gergelits et al.
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Fig. 1. Left: The numerical solution of the problem (2.12) on the background of the linear
FE triangulation. Right: The relative energy norm of the PCG error as a function of the iteration
steps. The Laplace operator preconditioning (solid line) is much more efficient than the incomplete
Cholesky preconditioning (dashed line), despite the fact that the condition numbers are 161.54 and
close to 16, respectively. This can be explained by the differences in the associated distribution
functions (see the end of section 4 below).

of iteration steps for the Laplace operator preconditioning (solid line) and for the
preconditioning using the algebraic incomplete Cholesky factorization of the matrix
A (ICHOL) with the drop-off tolerance 10 - 2 (dashed line) where the problem has
N = 3969 degrees of freedom. Despite the fact that the spectral condition number
\lambda max/\lambda min of the symmetrized preconditioned matrix for the Laplace operator pre-
conditioning is an order of magnitude larger than for the ICHOL preconditioning,
close to 161 and close to 16, respectively, PCG with the Laplace operator precondi-
tioning clearly demonstrates much faster convergence.5 This is due to the differences
in the distribution of the eigenvalues with the nonnegligible components of the initial
residuals in the direction of the associated eigenvectors and effects of rounding errors.

The spectra and distribution functions associated with the discretized precondi-
tioned problems are given in Figure 2 forN = 49 degrees of freedom and in Figure 3 for
N = 3969 degrees of freedom. Here, L = L1/2L1/2 is the matrix associated with the
discretized Laplace operator and CC\ast \approx A is the matrix resulting from ICHOL using
the drop-off tolerance 10 - 2, with the eigenvalues and eigenvectors of the associated
generalized eigenvalue problems (see (1.2))

Av\bfL 
i = \lambda \bfL 

i Lv
\bfL 
i , i = 1, . . . , N,

Av\bfC 
i = \lambda \bfC 

i CC\ast v\bfC 
i , i = 1, . . . , N.

The weights of the distribution function \omega \bfL (\lambda ) (respectively, \omega \bfC (\lambda )), associated with
the eigenvalues \lambda \bfL 

i (respectively, \lambda \bfC 
i , i = 1 . . . , N), related to the preconditioned

algebraic systems

A\bfL (L1/2x) = L - 1/2b, A\bfL = L - 1/2AL - 1/2,

5Here we do not compare the overall computational cost, which can be affected by the cost of
the individual preconditioned iterations depending on the domain and the discretization as well as
on the function k(x).
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Energy norm of the error

∥x− xk∥2K = ∥r0∥2
N∑
l=1

ωl

(
φCG
k (λl)

)2
λl

, k = 1, 2, . . .

• first residual (right-hand side, initial guess)

r0 = b−Kx0

ωl = (r0,ϕl)

• distribution of eigenvalues λl

• rounding errors (finite precision arithmetic)
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• distribution of eigenvalues λl

• rounding errors (finite precision arithmetic)
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Fig. 1. Left: The numerical solution of the problem (2.12) on the background of the linear
FE triangulation. Right: The relative energy norm of the PCG error as a function of the iteration
steps. The Laplace operator preconditioning (solid line) is much more efficient than the incomplete
Cholesky preconditioning (dashed line), despite the fact that the condition numbers are 161.54 and
close to 16, respectively. This can be explained by the differences in the associated distribution
functions (see the end of section 4 below).

of iteration steps for the Laplace operator preconditioning (solid line) and for the
preconditioning using the algebraic incomplete Cholesky factorization of the matrix
A (ICHOL) with the drop-off tolerance 10 - 2 (dashed line) where the problem has
N = 3969 degrees of freedom. Despite the fact that the spectral condition number
\lambda max/\lambda min of the symmetrized preconditioned matrix for the Laplace operator pre-
conditioning is an order of magnitude larger than for the ICHOL preconditioning,
close to 161 and close to 16, respectively, PCG with the Laplace operator precondi-
tioning clearly demonstrates much faster convergence.5 This is due to the differences
in the distribution of the eigenvalues with the nonnegligible components of the initial
residuals in the direction of the associated eigenvectors and effects of rounding errors.

The spectra and distribution functions associated with the discretized precondi-
tioned problems are given in Figure 2 forN = 49 degrees of freedom and in Figure 3 for
N = 3969 degrees of freedom. Here, L = L1/2L1/2 is the matrix associated with the
discretized Laplace operator and CC\ast \approx A is the matrix resulting from ICHOL using
the drop-off tolerance 10 - 2, with the eigenvalues and eigenvectors of the associated
generalized eigenvalue problems (see (1.2))

Av\bfL 
i = \lambda \bfL 

i Lv
\bfL 
i , i = 1, . . . , N,

Av\bfC 
i = \lambda \bfC 

i CC\ast v\bfC 
i , i = 1, . . . , N.

The weights of the distribution function \omega \bfL (\lambda ) (respectively, \omega \bfC (\lambda )), associated with
the eigenvalues \lambda \bfL 

i (respectively, \lambda \bfC 
i , i = 1 . . . , N), related to the preconditioned

algebraic systems

A\bfL (L1/2x) = L - 1/2b, A\bfL = L - 1/2AL - 1/2,

5Here we do not compare the overall computational cost, which can be affected by the cost of
the individual preconditioned iterations depending on the domain and the discretization as well as
on the function k(x).
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18 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Table of contents

Motivation

Introduction

Theory: Eigenvalues bounds
Scalar elliptic problems
Elasticity problems
Generalization

Applications: Computation homogenization
Fourier-Galerkin discretization
Finite element discretization

Conclusions
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2019 Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator.
2020 Generalized spectrum of second order differential operators
2022 Numerical approximation of the spectrum of self-adjoint operators in operator preconditioning
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Generalized eigenvalue problem

• linear system matrix

K

• eigenvalue problem

Kϕk = λk ϕk, k = 1, . . . , N

• preconditioned linear system matrix

(Kref)
−1

K

• generalized eigenvalue problem

Kϕk = λk K
refϕk, k = 1, . . . , N
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Eigenvalue bounds

• for every function φk having its support inside the patch Pk

λL
k = ess inf

x∈Pk

λmin

(
(Aref(x))−1A(x)

)
λU
k = ess sup

x∈Pk

λmax

(
(Aref(x))−1A(x)

)
• sort the two series non-decreasingly,{

λL
1 , λ

L
2 , . . . , λ

L
N

}
→λL

r(1) ≤ λL
r(2) ≤ · · · ≤ λL

r(N){
λU
1 , λ

U
2 , . . . , λ

U
N

}
→λU

s(1) ≤ λU
s(2) ≤ · · · ≤ λU

s(N)

Ω ∂Ω

φi

φj

Supports of φi and φj .
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Generalized Rayleigh quotient bounds

Let A(x),Aref(x) ∈ Rd×d be symmetric positive definite, then constants 0 < c1 ≤ c2 < ∞ bound the
generalised Rayleigh quotient

c1 ≤ wTA(x)w

wTAref(x)w
≤ c2, x ∈ Ω, andw ∈ Rd, w ̸= 0. (1)

Then for u ∈ H1
0 (Ω), by setting w = ∇u and integrating over Ω, we get

c1 ≤
∫
Ω
∇u ·A∇udx∫

Ω
∇u ·Aref∇udx

≤ c2.

Using u =
∑N

i=1 viφi, we get

c1 ≤
∫
Ω
∇u ·A∇udx∫

Ω
∇u ·Aref∇udx

=
vTKv

vTKrefv
≤ c2, v ∈ RN , v ̸= 0. (2)
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Courant–Fischer min-max theorem∗

If K,Kref ∈ RN×N are symmetric positive definite, then

λj = max
S, dimS=N−j+1

min
v∈S, v ̸=0

vTKv

vTKrefv
,

where S denotes a subspace of RN .

For j = 1 we have

λ1 = max
S, dimS=N

min
v∈S, v ̸=0

vTKv

vTKrefv
= min

v∈RN , v ̸=0

vTKv

vTKrefv
.

The next inequality follows from (1) and (2), such that

c1 ≤
∫
Ω
∇u ·A∇udx∫

Ω
∇u ·Aref∇udx

=
vTKv

vTKrefv
, v ∈ RN , v ̸= 0.

∗ e.g. Theorem 8.1.2 in G. H. Golub, Ch. F. Van Loan: Matrix Computations.
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Generalized eigenvalues of material data

• material data

c1 ≤ wTA(x)w

wTAref(x)w
≤ c2, x ∈ Ω, andw ∈ Rd, w ̸= 0

• lower bound

λL
1 = ess inf

x∈Ω
λmin

(
(Aref(x))−1A(x)

)
≤ min

v∈RN , v ̸=0

vTKv

vTKrefv
= λ1

• localization

λL
r(1) = ess inf

x∈Pr(1)

λmin

(
(Aref(x))−1A(x)

)
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Courant–Fischer min-max theorem†

If K,Kref ∈ RN×N are symmetric positive definite, then

λj = max
S, dimS=N−j+1

min
v∈S, v ̸=0

vTKv

vTKrefv
,

where S denotes a subspace of RN .

For j = 1 we have

λ1 = max
S, dimS=N

min
v∈S, v ̸=0

vTKv

vTKrefv
= min

v∈RN , v ̸=0

vTKv

vTKrefv
.

The next inequality follows from (1) and (2), such that

λL
r(1) = min

Pk⊂Ω
λL
k ≤ vTKv

vTKrefv
=

∫
Ω
∇u ·A∇udx∫

Ω
∇u ·Aref∇udx

, v ∈ RN , v ̸= 0.

† e.g. Theorem 8.1.2 in G. H. Golub, Ch. F. Van Loan: Matrix Computations.
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Courant–Fischer min-max theorem

If K,Kref ∈ RN×N are symmetric positive definite, then

λj = max
S, dimS=N−j+1

min
v∈S, v ̸=0

vTKv

vTKrefv
,

where S denotes a subspace of RN .

For j = 2 we have

λ2 = max
S, dimS=N−1

min
v∈S, v ̸=0

vTKv

vTKrefv
≥ min

v∈RN , v ̸=0, vr(1)=0

vTKv

vTKrefv

The next inequality follows from (1) and (2),

λL
r(2) = min

Pk⊂D
λL
k ≤ vTKv

vTKrefv
=

∫
D ∇u ·A∇udx∫

D ∇u ·Aref∇udx
, v ∈ RN , v ̸= 0, vr(1) = 0

where (due to vr(1) = 0) D contains only the supports of φk, k ̸= r(1).
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Geometric interpretation

• Lower bounds:

◦ λL
r(1) found in x1

◦ λL
r(2) found in x2

◦ λL
r(3) found in x3

◦ λL
r(4) found in x3

Ω ∂Ω

φ1 φ2

φ3φ4
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Example 2: Continuous data
• material data:

A(x) =

(
1 0.3
0.3 1

)
+

(
0.3 sin(x2) 0.1 cos(x1)
0.1 cos(x1) 0.3 sin(x2)

)
• reference data:

Aref
1 (x) =

(
1 0
0 1

)
and Aref

2 (x) =

(
1 0.3
0.3 1

)

0 20 40 60 80 100
k

0.00
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0.75
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λk

λU
k

λL
k
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k
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λL
k

29 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Example 2: Discontinuous data
• material data:

A(x) =

(
1 0.3
0.3 1

)
+

(
0.3 sgn(x2) 0.1 cos(x1)
0.1 cos(x1) 0.3 sgn(x2)

)
• reference data:

Aref
1 (x) =

(
1 0
0 1

)
and Aref

2 (x) =

(
1 0.3
0.3 1

)
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k
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Homogeneous subdomain

• scalar multiple

Aref (x) = aA(x) x ∈ Pk

• bounds

λL
k = ess inf

x∈Pk

λmin

(
(Aref(x))−1A(x)

)
λU
k = ess sup

x∈Pk

λmax

(
(Aref(x))−1A(x)

)

(Aref)−1︷ ︸︸ ︷(
1 0
0 1

)−1

A︷ ︸︸ ︷(
2 0
0 2

)
−→ 2 2

(Aref)−1︷ ︸︸ ︷(
1 0
0 1

)−1

A︷ ︸︸ ︷(
0.5 0
0 0.5

)
−→ 0.5 0.5
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Example 3: Scalar multiple

• Aref =

(
1 0
0 1

)
A1 =

(
1 0
0 1

)
A2 =

(
2 0
0 2

)
Ω

A1 A2

1 7 13 19 25 31 37 43 49
k

0.50

0.75

1.00

1.25

1.50

1.75

2.00 λk

λU
k

λL
k
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Example 4: Interfaces
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0 1
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33 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Example 4: Interfaces

• Aref =

(
1 0
0 1

)
A1 =

(
1 0
0 1

)
A2 =

(
2 0
0 2

)
Ω A1

A2

1 7 13 19 25 31 37 43 49
k

0.50

0.75

1.00

1.25

1.50

1.75

2.00 λk

λU
k

λL
k
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Homogeneous subdomain

• scalar multiple

Aref (x) ̸= aA(x) x ∈ Pk

• bounds

λL
k = ess inf

x∈Pk

λmin

(
(Aref(x))−1A(x)

)
λU
k = ess sup

x∈Pk

λmax

(
(Aref(x))−1A(x)

)

(Aref)−1︷ ︸︸ ︷(
1 0
0 1

)−1

A︷ ︸︸ ︷(
1 0
0 1.5

)
−→ 1.5 2

(Aref)−1︷ ︸︸ ︷(
1 0
0 1

)−1

A︷ ︸︸ ︷(
2 0
0 1.8

)
−→ 1.8 2
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Homogeneous subdomain

• scalar multiple

Aref (x) ̸= aA(x) x ∈ Pk

• bounds

λL
k = ess inf

x∈Pk

λmin

(
(Aref(x))−1A(x)

)
λU
k = ess sup

x∈Pk

λmax

(
(Aref(x))−1A(x)

)

(Aref)−1︷ ︸︸ ︷(
1 0
0 1

)−1

A︷ ︸︸ ︷(
1 0
0 1.5

)
−→ 1.5 2

(Aref)−1︷ ︸︸ ︷(
1 0
0 1

)−1

A︷ ︸︸ ︷(
2 0
0 1.8

)
−→ 1.8 2
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Example 4

• Aref =

(
1 0
0 1

)
A1 =

(
1 0
0 1

)
A2 =

(
2 0
0 2

)
Ω

A1 A2

1 7 13 19 25 31 37 43 49
k

1.0

1.2

1.4

1.6

1.8

2.0 λk

λU
k

λL
k
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Example 4
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2 0
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)
Ω
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1 7 13 19 25 31 37 43 49
k
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Example 4

• Aref =

(
1 0
0 1

)
A1 =

(
1 0
0 1.5

)
A2 =

(
2 0
0 1.8

)
Ω

A1 A2

1 7 13 19 25 31 37 43 49
k

1.0

1.2

1.4

1.6

1.8

2.0 λk

λU
k

λL
k
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Example 5: Optimization

A3 (
1.3 0.4
0.4 1.3

)

(
0.7 0.4
0.4 0.7

) (
0.7 0.2
0.2 0.7

)

(
1.3 0.2
0.2 1.3

) A4

A1A2

Ω

Aref =

(
1 0
0 1

) 0 8 16 24 32 40 48 56 64
k

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

λk

λU
k

λL
k
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Example 5: Optimization

A3 (
0.9 1.7

)

(
0.5 0.9

)(
0.3 1.1

)

(
1.1 1.5

) A4

A1A2

Ω

Aref =

(
1 0
0 1

) 0 8 16 24 32 40 48 56 64
k

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

λk

λU
k

λL
k
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Example 5: Optimization

A3 (
1.29 1.31

)

(
0.69 0.71

)(
0.43 0.84

)

(
1.15 1.57

) A4

A1A2

Ω

Aref =

(
1 0.3
0.3 1

) 0 8 16 24 32 40 48 56 64
k

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

λk

λU
k

λL
k
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Example 5: Optimization

A3 (
1.8 1.88

)

(
1.0 1.0

)(
0.6 1.22

)

(
1.67 2.2

) A4

A1A2

Ω

Aref = A1 =

(
0.7 0.2
0.2 0.7

) 0 8 16 24 32 40 48 56 64
k

0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

λk

λU
k

λL
k
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Example 5: Optimization

A3 (
1.55 3.0

)

(
0.8 1.67

)(
1.0 1.0

)

(
1.36 3.67

) A4

A1A2

Ω

Aref = A2 =

(
0.7 0.4
0.4 0.7

) 0 8 16 24 32 40 48 56 64
k

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
λk

λU
k

λL
k
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Example 5: Optimization

A3 (
0.82 1.13

)

(
0.45 0.6

)(
0.27 0.73

)

(
1.0 1.0

) A4

A1A2

Ω

Aref = A3 =

(
1.3 0.2
0.2 1.3

) 0 8 16 24 32 40 48 56 64
k

0.2

0.4

0.6

0.8

1.0

1.2

1.4 λk

λU
k

λL
k
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Example 5: Optimization

A3 (
1.0 1.0

)

(
0.53 0.55

)(
0.33 0.65

)

(
0.88 1.2

) A4

A1A2

Ω

Aref = A4 =

(
1.3 0.4
0.4 1.3

) 0 8 16 24 32 40 48 56 64
k

0.2

0.4

0.6

0.8

1.0

1.2

1.4 λk

λU
k

λL
k
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Small-strain elasticity

• governing equation

−∂TC(x)∂u(x) = F (x) x ∈ Ω

• original system matrix

K =

∫
Ω

∂vTC∂udx

• reference system matrix

Kref =

∫
Ω

∂vTCref∂udx

• approximation

uα(x) ≈ uN
α (x) =

N∑
I=1

uN
α (xI

n)φ
I(x)
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Geometric interpretation

• Lower bounds:

◦ λL
r(1) found in x1

◦ λL
r(2) found in x1

◦ λL
r(3) found in x2

◦ λL
r(4) found in x2

◦ λL
r(5) found in x3

◦ λL
r(6) found in x3

◦ λL
r(7) found in x3

◦ λL
r(8) found in x3

Ω ∂Ω

φ1, φ2 φ3, φ3

φ5, φ6φ7, φ8
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Example 6: Elasticity

C(x) =
E(x)

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 0.5− ν)

 , ν = 0.2.

Cref
1 : {E = 1, ν1 = 0} and Cref

2 : {E = 1, ν1 = 0.2} Ω

E = 1.3

∂Ω

E = 1.3

E = 0.7

E = 0.7

200 400 600 800

k
0

0.5

1

1.5

2

200 400 600 800

k
0

0.5

1

1.5

2

U
s(k)

k

L
r(k)
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Material data in quadrature points

• quadrature ∫
Ω

∂ṽ(x)TCref(x)∂u(x) dx ≈
NQ∑
Q=1

∂ṽ(xQ
q )

TCref(xQ
q )∂u(x

Q
q )w

Q

• bounds over quadrature points

λL
k = min

xQ
q ∈suppφk

λmin

(
(Cref(xQ

q ))
−1C(xQ

q )
)
, k = 1, . . . , dN

λU
k = max

xQ
q ∈suppφk

λmax

(
(Cref(xQ

q ))
−1C(xQ

q )
)
, k = 1, . . . , dN
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Implementation per elements

• compute bounds for every element

c1 ≤ wTA(x)w

wTAref(x)w
≤ c2, x ∈ Ωe, andw ∈ Rd, w ̸= 0, e = 1, . . . , Ne

• bounds on local matrices

c1 ≤ vTKev

vTKref
e v

=

∫
Ωe ∇u ·A∇udx∫

Ωe ∇u ·Aref∇udx
≤ c2

• local matrices Ke ∈ RN×N and Kref
e ∈ RN×N

K =

Ne∑
e=1

Ke, Kref =

Ne∑
e=1

Kref
e

41 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Bounds from local matrices

• lower bound on the first eigenvalue

vTKv ≥ λL
1 v

TKrefv, v ∈ RN , v ̸= 0

• equivalently in the sum form

Ne∑
e=1

vTKev ≥ λL
1

Ne∑
e=1

vTKref
e v, v ∈ RN , v ̸= 0

• sufficient condition

vTKev ≥ λL
1 v

TKref
e v, v ∈ RN , v ̸= 0, e = 1, . . . , Ne
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Courant–Fischer min-max theorem

• Courant-Fischer min-max principle

λ2 = max
S, dimS=N−1

min
v∈S, v ̸=0

vTKv

vTKrefv
≥ min

v∈RN , v ̸=0, vr(1)=0

vTKv

vTKrefv

• any λL
2 ∈ R such that

vTKv ≥ λL
2 v

TKrefv, v ∈ RN , vr(1) = 0

is a lower bound to λ2.

• sufficient condition

vTKev ≥ λL
2 v

TKref
e v, e = 1, . . . , Ne, v ∈ RN , v ̸= 0, vr(1) = 0
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Generalized bounds

• locally assembled system matrices

K =

Ne∑
e=1

Ke Kref =

Ne∑
e=1

Kref
e

• can be applied to:

◦ finite difference
◦ stochastic Galerkin FE method
◦ algebraic multilevel preconditioning
◦ discontinuous Galerkin

Note that symmetric positive semi-definite Ke ∈ RN×N and Kref
e ∈ RN×N must have the same kernels.
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Example 7: Finite difference 1

• material data:

A(x) =
(
1 + 0.3 cos

(
(x1 + x2)

π

2

))( 1 0.3
0.3 1

)
• reference data:

Aref
1 =

(
1 0
0 1

)
, and Aref

2 =

(
1 0.3
0.3 1

)

50 100 150

k

0

0.5

1

1.5

U

k

k

L

k

50 100 150

k

0

0.5

1

1.5

U

k

k

L

k
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Preconditioned conjugate gradients

• preconditioned system

(Kref)
−1

Ku = (Kref)
−1

b

• additional system

Krefzk = rk

1: procedure PCG(u0, K, b,M, tol, itmax)

2: r0 := b − Ku0

3: z0 := M−1r0

4: nr0 := ∥r0∥ ▷ initial residual

5: p0 := z0
6:
7: while k ≤ itmax do ▷ k = 0, 1, ..., itmax

8: Kpk = Kpk

9: αk =
r⊤k zk

p⊤
k

Kpk

10: δũk+1 = δũk + αkpk

11: rk+1 = rk − αkKpk

12: zk+1 = M−1rk+1

13: nrk+1 =
∥∥∥rk+1

∥∥∥
14: if

nrk+1
nr0

< tol then

15: return uk+1

16: βk =
r⊤k+1zk+1

r⊤
k

zk

17: pk+1 = zk+1 + βkpk

18:
19: k = k + 1

20: return uk
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Periodic homogenization

• governing equation

−∇ ·A(x)∇u(x) = 0 x ∈ Y
periodic B.C.

• overall gradient field

∇u(x) =e+∇ũ(x) x ∈ Y

e =
1

|Y|

∫
Y
∇u(x) dx ∈ Rd

• homogenized (constant) material data

AHe =
1

|Y|

∫
Y
A(x)(e+∇ũ(x)) dx

Y

0 x1

x2
l2
2

− l2
2

l1
2

− l1
2

A rectangular cell with outlined periodic
microstructure.
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A(x)(e+∇ũ(x)) dx

x

u

=

x

u

+

x

u

1

e

ũ
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∇u(x) =e+∇ũ(x) x ∈ Y

e =
1

|Y|

∫
Y
∇u(x) dx ∈ Rd

• homogenized (constant) material data

AHe =
1

|Y|

∫
Y
A(x)(e+∇ũ(x)) dx
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48 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Periodic homogenization

• governing equation

−∇ ·A(x)(e+∇ũ(x)) = 0 x ∈ Y

• weak form∫
Y
∇ṽ(x)TA(x)∇ũ(x) dx =

∫
Y
∇ṽ(x)TA(x)e dx ṽ ∈ V

• system matrix

K[j, i] =

∫
Y
∇φj(x)

TA∇φi(x) dx

V =
{
ṽ : H1

per(Y),
∫
Y ṽ(x) dx = 0

}

Y

0 x1

x2
l2
2

− l2
2

l1
2

− l1
2
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Fourier-Galerkin method

• regular (pixel/voxel) data structure

• Fourier-basis

ũ(x) ≈
N∑
i=0

ûiφ
FG
i (x) =

N∑
i=0

ûi exp(2πikix)

∇ũ(x) ≈
N∑
i=0

ûi∇φFG
i (x) =

N∑
i=0

2πiki ûi exp(2πikix)

• linear system with Fourier coefficient

FHK̂Fũ = b û = Fũ

Y

0 x1

x2
l2
2

− l2
2

l1
2

− l1
2
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Fourier-Galerkin method: Homogeneous reference data

• closed-form expression

K̂ref[j, i] =

∫
Y
∇φFG

j (x)TAref∇φFG
i (x) dx =

{
kTjA

refki for i = j

0 for i ̸= j

• K̂ref is block diagonal in the Fourier space

(Kref)
−1

= FH(K̂ref)
−1

F

• accelerated by FFT

F−1(K̂ref)
−1F︸ ︷︷ ︸

(Kref)−1

Kũ =F−1(K̂ref)
−1F︸ ︷︷ ︸

(Kref)−1

b
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Fourier-Galerkin method: Heat conduction

Y

l Ainc

Amat

l
2

(a) (c)

−5

0

5

q2
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Oscillations

(a.2) (c.2)(b.2) (d.2)

−5

0

5

q2

53 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Damage fields in concrete

(a) Fourier projection (b) Linear finite elements on two el. projection

Aggregates Cement paste ASR gel pockets Damaged pixels

Fourier basis linear FE basis.

54 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Finite element method: discretisation grids

− l2
2

− l1
2

l2
2

− l2
2

l1
2

− l1
2

YY

l2
2

x2 x2

x1l1
2
x1

Discretisation nodes xI
n Quadrature points xQ

qPixels Elements

xI
n xI

n

x1
q

x4
q

x2
q

x3
q

x1
q

x2
q

l2
2

− l2
2

l1
2

− l1
2

Y

x2

x1

xI
n

x1
q
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Finite element method: Assembly of K̂ref

• no (simple) closed-form expression

K̂ref[j, i] =

∫
Y
∇φFE

j (x)TAref∇φFE
i (x) dx ̸=

{
kTjA

refki for i = j

0 for i ̸= j

• K̂ref is diagonal

(Kref)
−1

= FH
d (K̂

ref)
−1

Fd.
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The block-circulant structure of Kref
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Finite element method: Assembly of K̂ref
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ũ b=

61 11 16 20

0

0
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Example 9: Grid size independence – elasticity
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59 / 67 Martin Ladecký: Discrete Green’s operator preconditioning: Theory and applications



Example 9: Grid size independence – elasticity

Y

C1

C2

Ceff
r2 = 0.4

r1 = 0.2

l
=

1

x2

x3

σ11
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Example 9: Grid size independence – elasticity
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Example 9: Scaling
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Example 9: Choice of reference material
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Example 10: Choice of reference material
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Example 11: Damage in concrete – bilinear FE
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Example 11: Damage in concrete – under-integrated bilinear FE
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Example 11: Damage in concrete – linear FE
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Example 11: Damage in concrete – isotropic mesh
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The take-home message

The discrete Green’s (Laplace) operator preconditioning makes
condition number independent of mesh size. Additionally, the
distribution of eigenvalues can be estimated and optimized.
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Collaborations

• Eigenvalues bounds

• FFT-based FE solvers

• Fourier-Galerkin
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Outlook & Support

Outlook:

• improve eigenvalues bounds

• PCG convergence estimate for homogenization
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• SGS: SGS21/003-, SGS20/002-, SGS19/002-, SGS18/005-/OHK1/1T/11

F U N D E D  B Y
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