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Motivation



Uncertainty Quantification and SGM

• models of geotechnical systems often have inherent uncertainty in the input data

• unknown material parameters, imprecise measurements

• e.g. rock properties for specific model

• probabilistic solutions to PDEs with random/uncertain inputs are useful in various
applications

• e.g. uncertainty quantification, sensitivity analysis, and design optimization

• can be solved using various methods such

• Monte Carlo sampling, collocation methods

• stochastic Galerkin method

• problems with uncertainties are much more computationally expensive

• we need to exploit the structures of the problem

• stochastic Galerkin method is more efficient for specific types of problem
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Model uncertainty used here

• hydraulic conductivity field with unknown material properties

k (x ,Z ) =

Mk∑
m=1

1Dm (x) exp (σmZm + µm)

i.e. we know where certain type of materials are, but do not know their exact

properties
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Deterministic case



Stationary Darcy flow


−div (k (x)∇u (x)) = f (x) x ∈ D

u (x) = u0 (x) x ∈ ΓD

−k (x) ∂u(x)
n(x) = g (x) x ∈ ΓN

, (1)

• D ⊂ Rd (d = 1, 2, 3) is a Lipschitz domain,

• k (x) is a permeability field,

• f (x) is a volume source,

• u0 (x) are prescribed pressures on the Dirichlet boundary ΓD ,

• g (x) represents sources on the Neumann boundary ΓN .
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Weak form

Find uH ∈ H1
0,ΓD

(D),
(
u = u0 + uH ∈ H1 (D)

)
:

a (uH , v) = b (v) , ∀v ∈ H1
0,ΓD

(D) ,

a (uH , v) =

ˆ

D

k (x)∇uH (x) · ∇v (x) dx ,

b (v) =

ˆ

D

f (x) v (x) dx −
ˆ

ΓN

g (x) v (x) dx −
ˆ

D

k (x)∇u0 (x) · ∇v (x) dx

• k ∈ L∞ (D) , 0 < kmin ≤ k (x) ≤ kmax <∞ ∀x ∈ D,

• f ∈ L2 (D),

• u0 ∈ H1 (D),

• g ∈ L2 (ΓN) (or g ∈ H−1/2 (ΓN)).
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Well-posedness

Proof of well-posedness via the Lax-Milgram theorem. We need:

• H1
0,ΓD

(D) to be a Hilbert space

• a (u, v) to be continuous and elliptical bilinear operator

∃C > 0 ∀u, v ∈ H1
0,ΓD

(D) : |a (u, v)| ≤ C ∥u∥ ∥v∥

∃c > 0 ∀u ∈ H1
0,ΓD

(D) : a (u, u) ≥ c ∥u∥2

• b (v) ∈ H−1
0,ΓD

(D)

For the current problem all of these requirements are fulfilled and the problem is

well-posed.
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Random variables/vectors/fields



Random variables

Let (Ω,F ,P) be a probability space

• continuous random variable Z is a map from sample space Ω → R
• can be described by the probability density f : R → R+

0 ,
´
R
f (x) dx = 1

• distribution of a random variable Z defines a probability measureˆ

Ω

g (Z (ω)) dP (ω) =

ˆ

R

g (Z ) dFZ =

ˆ

R

g (z) f (z) dz = E (g (Z ))
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Random vectors

• random vector is a vector of M (let assume continuous) random variables

Z = (Z1, . . . ,ZM)

• can be described by a joint probability density fZ : RM → R+
0 ,
´
RM

fZ (x) dx = 1

• random vector of independent random variables has a joint probability density in

form

fZ (z) =
M∏
i=1

fZi
(zi )
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Random fields

• real-valued random field {X (t) : t ∈ T } X (t) : Ω → R,
• indexed set of real valued random variables

• can be viewed as a function on both T ,Ω: X : T × Ω → R
• can be viewed as an H-valued random variable X : Ω → RT

• RT denotes a set of functions T → R
• important question is the regularity of random field = what properties does RT have

• for some, can be answered by inspecting the properties of its covariance function

• e.g. L2 (T ) ,C (T ) , . . .
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Spaces on Ω

Let (Ω,F ,P) be a probability space

• most often we need “just” square integrable functions/random variables

• square integrable real valued random variable X fulfills

ˆ

Ω

X (ω)2 dP (ω) <∞

• space of all real valued square integrable random variables L2 (Ω) (sometimes we

stretch this notation to the space of random vectors)

• square of integrable functions of a random vector Z creates the space

L2dFZ
(
RM
)
:=

f : RM → R :

ˆ

Ω

f (Z (ω))2 dP (ω) =

ˆ

RM

f (Z )2 dFZ <∞


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Spaces on Ω

• Random field X : Ω → V (V is normed space) is square integrable (second order)

random field if ˆ

Ω

∥X (ω)∥2V dP (ω) <∞

• with corresponding space L2 (Ω,V )

• second order random field X : Ω → L2 (T ), X ∈ L2
(
Ω, L2 (T )

)
≈ L2 (Ω)⊗ L2 (T )

• Karhunen-Loève decomposition

X (ω, x) = µX (x) +
∞∑
j=1

√
λjψj (x) ξj (ω)

• as
√
λj decreases, we can truncate the sum (many standard random fields have error

estimates for truncation)
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Uncertainties in parameters



Darcy flow with uncertainties (infinite)


−divx (k (x , ω)∇xu (x , ω)) = f (x , ω) , ∀ω ∈ Ω, ∀x ∈ D

u (x , ω) = u0 (x , ω) , ∀ω ∈ Ω, ∀x ∈ ΓD

−k (x , ω) ∂u(x ,ω)
∂n(x) = g (x , ω) , ∀ω ∈ Ω, ∀x ∈ ΓN

,

k (x , ω), f (x , ω), u0 (x , ω), g (x , ω), u (x , ω) : D × Ω → R are understood as random

fields

• there is no uncertainty in geometry! (very different types of problem, out of

scope for this talk)

• we obtain a deterministic system for each ω ∈ Ω

• necessary requirements is that each of these systems is well-posed

• u (x , ω) can be then viewed as mapping of the sample set to deterministic solutions

u : Ω → H1 (D), i.e. the path-wise solution
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Darcy flow with uncertainties (discretized)

• An infinite dimensional case cannot be solved directly, we need to replace random

fields with functions of random variables.

• e.g. via the Karhunen-Loève decomposition or the projection into orthogonal

polynomials

We obtain similar problem, but “parametric dimension” is now finite = there are M

parameters forming a random vector
−divx (k (x ,Z (ω))∇xu (x ,Z (ω))) = f (x ,Z (ω)) , ∀x ∈ D,Z ∈ RM

u (x ,Z (ω)) = u0 (x ,Z (ω)) , ∀x ∈ ΓD ,Z ∈ RM

−k (x ,Z (ω)) ∂u(x ,Z)
∂n(x) = g (x ,Z (ω)) , ∀x ∈ ΓN ,Z ∈ RM

,

k (x ,Z ), f (x ,Z ), u0 (x ,Z ), g (x ,Z ), u (x ,Z ) : D × RM → R are understood as

functions of random vector Z (ω) ∈ L2
(
Ω,RM

)
(this includes its probability

distribution)
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Variational formulation

Find uH ∈ L2
(
Ω,H1

0,ΓD
(D)
)
,
(
u = u0 + uH ∈ L2

(
Ω,H1 (D)

))
:

a (uH , v) = b (v) , ∀v ∈ L2
(
Ω,H1

0,ΓD
(D)
)
,

a (uH , v) =

ˆ

RM

ˆ

D

k (x ,Z )∇xuH (x ,Z ) · ∇xv (x ,Z ) dx dFZ ,

b (v) =

ˆ

RM

ˆ

D

f (x ,Z ) v (x ,Z ) dx dFZ −
ˆ

RM

ˆ

ΓN

g (x ,Z ) v (x ,Z ) dx dFZ

−
ˆ

RM

ˆ

D

k (x ,Z )∇xu0 (x ,Z ) · ∇xv (x ,Z ) dx dFZ

• k ∈ L2 (Ω, L∞ (D)) , 0 < kmin ≤ k (x ,Z (ω)) ≤ kmax <∞ ∀x ∈ D,∀ω ∈ Ω,

• f ∈ L2
(
Ω, L2 (D)

)
, u0 ∈ L2

(
Ω,H1 (D)

)
, g ∈ L2

(
Ω, L2 (ΓN)

)
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Well-posedness

Similarly as in the deterministic case, we can show that

• L2
(
Ω,H1

0,ΓD
(D)
)
is a Hilbert space

• a (u, v) is continuous and elliptical bilinear operator

∃C > 0 ∀u, v ∈ L2
(
Ω,H1

0,ΓD
(D)
)
: |a (u, v)| ≤ C ∥u∥ ∥v∥

∃c > 0 ∀u ∈ L2
(
Ω,H1

0,ΓD
(D)
)
: a (u, u) ≥ c ∥u∥2

• b (v) ∈ L2
(
Ω,H1

0,ΓD
(D)
)∗
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Types of uncertainties

Input uncertainties k (x ,Z ) , f (x ,Z ) , u0 (x ,Z ) , g (x ,Z ) can be divided into two

groups:

• uncertainties whose affect a (·, ·)
• k (x ,Z )

• uncertainties whose only affect b (·)
• f (x ,Z ) , u0 (x ,Z ) , g (x ,Z )
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Uncertainties in b (·)

If k (x ,Z ) = k (x) (without uncertainty) and other uncertain inputs are separable

f (x ,Z ) =

Mf∑
i=1

f Di (x) f Si (Z ) , u0 (x ,Z ) =
Mu∑
i=1

uD0,i (x) u
S
0,i (Z ) , g (x ,Z ) =

Mg∑
i=1

gD
i (x) gS

i (Z )

The linearity of the problem yields

u (x ,Z ) =

Mf∑
i=1

ufi (x) f
S
j (Z ) +

Mu∑
i=1

uui (x) u
S
0,i (Z ) +

Mg∑
i=1

ugi (x) gS
i (Z )

Where ufi (x) , u
u
i (x) , u

g
i (x) are the solutions of deterministic problems.
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Uncertainties in b (·)

i = 1, . . .Mf , u
f
i :


−div

(
k (x)∇ufi (x)

)
= f Di (x) x ∈ D

u (x) = 0 x ∈ ΓD

−k (x) ∂u(x)
n(x) = 0 x ∈ ΓN

,

i = 1, . . .Mu, u
u
i :


−div (k (x)∇uui (x)) = 0 x ∈ D

u (x) = uD0,i (x) x ∈ ΓD

−k (x) ∂u(x)
n(x) = 0 x ∈ ΓN

,

i = 1, . . .Mg , u
g
i :


−div

(
k (x)∇ugi (x)

)
= 0 x ∈ D

u (x) = 0 x ∈ ΓD

−k (x) ∂u(x)
n(x) = gD

i (x) x ∈ ΓN

,
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Uncertainties in b (·)

• This works in the same way if k (x ,Z ) is not deterministic

• sub-problems are also stochastic, but only with stochastic k (x ,Z )

• separable representation of f (x ,Z ) , u0 (x ,Z ) , g (x ,Z ) can be done with the
projection into orthogonal polynomials on Ω

• due to well-posedness, good separable approximations yields good approximations of

original u

• In usual cases, f (x ,Z ) , u0 (x ,Z ) , g (x ,Z ) depends on different random variables
than k (x ,Z )

• stochastic sub-problems with k (x ,Z ) have lower dimension

• if not, this approach will not bring much benefit

• for simplicity we proceed with deterministic f (x) , u0 (x) , g (x)

• extension to stochastic f (x ,Z ) , u0 (x ,Z ) , g (x ,Z ) will not change the complexity of

the problem
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Vanishing material field

• the condition 0 < kmin ≤ k (x ,Z (ω)) ≤ kmax <∞ may be too strong

• if we are interested in a path-wise solution (∀ω ∈ Ω), the deterministic problem

for each ω ∈ Ω is well posed if

0 < kmin (ω) ≤ k (x ,Z (ω)) ≤ kmax (ω) <∞

• but the condition for the whole problem throughout Ω can be broken:

inf
ω∈Ω

kmin (ω) = 0, sup
ω∈Ω

kmax (ω) = ∞

• this is the case for a log-normal random variable exp (Z ), Z ∼ N (µ, σ)
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Well-posedness of vanishing material field

• well posedness can be achieved using weighted spaces

L2ϱ (Ω,V ) := L2 ((Ω,F , ϱdP) ,V ) =
{
f : Ω → V measurable : E

(
∥f ∥2V ϱ

)}
• for kmin (ω) from previous slide, we define a space

Uk−1
min

:= L2
k−1
min

(
Ω,H1

0,ΓD
(D)
)

• if b ∈ U∗
k (e.g. f ∈ L2

k−1
min

(
Ω, L2 (D)

)
), the problem can be shown to be well-posed

in Uk

• but still, the problem is not as nice as if k (x , ω) was uniformly bounded throughout

Ω

• Galerkin approximation inside Uk may be a problem

A. Mugler, H.-J. Starkloff: On the convergence of the stochastic Galerkin method

for random elliptic partial differential equations, 2013 ESAIM
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Weighted formulation for vanishing material field

• For our simple case, the problem can be reformulated into

−divx

(
k (x , ω)

kmin (ω)
∇xu (x , ω)

)
=

f (x , ω)

kmin (ω)
,

where 1 ≤ k(x ,ω)
kmin(ω)

∀ω ∈ Ω and f (x ,ω)
kmin(ω)

need to be from L2
(
Ω,H1

0,ΓD
(D)
)

• the reformulated problem is well-posed in L2
kk−1

min

(
Ω,H1

0,ΓD
(D)
)

• L2
kk−1

min

(
Ω,H1

0,ΓD
(D)
)
is continuously embedded in L2

(
Ω,H1

0 (D)
)
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Examples of broken convergence

−div (exp (Z )∇u (x ,Z )) = exp (Z ) |Z − 1| x ∈ D, Z ∼ N (0, 1)

u (x ,Z ) = 0 x ∈ ∂D, Z ∼ N (0, 1)


−
(
exp

(
−Z2x

10

)
u′ (x ,Z )

)′
= 1 x ∈ D = (0, 1) , Z ∼ N (0, 1)

u (0,Z ) = 0 Z ∼ N (0, 1)

− exp
(
−Z2x

10

)
u′ (1,Z ) = − exp

(
−6Z 2

)
Z ∼ N (0, 1)

Michal Béreš SGM for PDEs with uncertainties 23/61



Stochastic Galerkin method



Discretization spaces

• we seek the solution u (uH) in space L2
(
Ω,H1

0,ΓD
(D)
)
which is isometrically

isomorphic with H1
0,ΓD

(D)⊗ L2 (Ω)

• this means that u can be represented as

u (x , ω) =
∞∑
i=1

uDi (x) uSi (ω) , uDi (x) ∈ H1
0,ΓD

(D) , uSi (ω) ∈ L2 (Ω)

• we use the tensor structure of the solution/test space to construct the

finite-dimensional solution/test space

Vh,K := Vh ⊗ VK , Vh ⊂ H1
0,ΓD

(D) ,VK ⊂ L2 (Ω)

Vh := {φ1 (x) , . . . , φND
(x)} , VK := {ψ1 (ω) , . . . , ψNS

(ω)}

• the dimension of Vh,K is NDNS with the basis

ξi,j (x , ω) = φi (x)ψj (ω) , ∀i = 1, . . . ,ND , j = 1, . . . ,NS
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Discretization of H1
0,ΓD

(D)

• Discretization of H1
0,ΓD

(D) is usually done using finite elements.

• the same choice as for the deterministic counterpart of the problem

• as the basis is not adaptive with respect to Ω, its good to consider what possible

grids will be needed throughout different possible realisations of ω
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Discretization of L2 (Ω)

• we use the transition from u (x , ω) into u (x ,Z (ω))

• Z is a random vector

• ψi (ω) = ψi (Z ) (a shift from abstract function on the stochastic space, into the

functions of a real valued vector)

• there is (in all standard cases) no benefit from picking local basis functions

• the best choice are the polynomials

• complete polynomials = multivariate polynomials with bounded total degree

VK = span

{
ψ (Z ) =

M∏
i=1

Zαi

i :
M∑
i=1

αi ≤ K

}
• tensor product polynomials = multivariate polynomials with uniformly bounded

degree

VK = span

{
ψ (Z ) =

M∏
i=1

Zαi

i : αi ≤ K ∀i

}
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Polynomials of random vector

• although the space VK itself is given now, it is very important to pick the right

basis

• we need to consider the following issues:

• numerical stability, e.g. Z 20 will range from very low to very high values

• potential sparsity of resulting system

• both of these issues can be (at least partially) solved by using the orthogonal
polynomials with respect to the distribution of Z

• for a general Z , we need to construct the polynomials for the whole Z (e.g.

Gram-Schmidt - very difficult to avoid numerical stability issues)

• for Z consisting of independent random variables Zi , it can be easily constructed as

a product of orthogonal polynomials on each variable Zi
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Orthogonal polynomials of independent random vector

• sometimes called “polynomial chaos”

• many “standard” random variables have well-known orthogonal polynomials with
understood properties and methods of construction

• e.g. Hermite polynomials, Laguerre polynomials, Jacobi polynomials, ...

• organized into Askey scheme

• recurrence relation is very useful for stable evaluation of the polynomials

Pn(x) = (Anx + Bn)Pn−1(x) + CnPn−2(x)

• orthogonal polynomials on Z product of 1d polynomials of Zi

ψi (Z ) =
M∏
k=1

ψik (Zk) ,

where i denotes the multi-index of size M
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Assembling the SGM matrix



Separable form of input data

• we could now assemble the matrix (and right hand side) but it would be
semi-dense NDNS × NDNS matrix (usually ND > 106, NS > 103) which would
probably not fit into memory

• NDNS = 109 and 0.0001% fill it would take ≈ 1.5 TB (terabyte) in the sparse

format (CRS)

• we need to assemble the matrix in a compressed form

• the way to achieve this is to have all input data in separable form (same as before
for elimination of uncertainty in b (·))

• for simplicity we still assume only the permeability field with uncertainties

k (x ,Z ) =

Mk∑
m=1

kD
m (x) kS

m (Z )
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Bilinear form on tensor product space

Recall the bilinear form of the problem

a (u, v) =

ˆ

RM

ˆ

D

k (x ,Z )∇xu (x ,Z ) · ∇xv (x ,Z ) dx dFZ

• the solution u is in the form

u (x ,Z ) =

ND∑
i=1

NS∑
j=1

ui ,jφi (x)ψj (Z )

Combined with the separability of k (x ,Z ), we obtain for v = φℓ (x)ψn (Z ):

a (u, v) =

Mk∑
m=1

ND∑
i=1

NS∑
j=1

ui ,j

ˆ

RM

ˆ

D

kDm (x) kSm (Z )∇xφi (x)·∇xφℓ (x)ψj (Z )ψn (Z ) dx dFZ
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Bilinear form on tensor product space

The integrals can be separated now

a (u, v) =

Mk∑
m=1

ND∑
i=1

NS∑
j=1

ui ,j

ˆ

D

kDm (x)∇xφi (x)·∇xφℓ (x) dx

ˆ

RM

kSm (Z )ψj (Z )ψn (Z ) dFZ

and the matrix of the system can be represented as (assuming indexing ij ×mn)

A =

Mk∑
m=1

Gm ⊗ Km,

(Km)im =

ˆ

D

kDm (x)∇φi (x) · ∇φℓ (x) dx ,

(Gm)jn =

ˆ

RM

kSm (Z )ψj (Z )ψn (Z ) dFZ .
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Kronecker product

A⊗ B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB


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Assembly of sub-matrices Gm, Km

• Km are “standard” finite elements matrices (although material can be zero or

even negative)

• Gm are possibly hard to assemble, generally can be dense and every entry
represents integral over RM with measure given by Z

• if Z is independent and kS
m (Z ) =

∏M
s=1 k

S
m,s (Zs)

ˆ

RM

kS
m (Z )ψj (Z )ψn (Z ) dFZ =

M∏
s=1

ˆ

R

kS
m,s (Zs)ψjs (Zs)ψns (Zs) dFZs

• in usual cases kS are smooth (analytical) and we can estimate the integrals very

efficiently via the Gaussian quadrature rule
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Resulting system in the form of matrix equations

Au = b

A =

Mk∑
m=1

Gm ⊗ Km, b =

Mb∑
m=1

gm ⊗ km

here we simplify the right hand side as sum over Mb terms as it will look differently

based on exact problem (f , u0, ...) at maximum it would be (considering all input data

with uncertainties) Mb = MkMu +Mf +Mg

The system can be viewed as matrix equations, assuming reshaping u into ND × NS

matrix u
Mk∑
m=1

KmuGT
m =

Mb∑
m=1

kmg
T
m
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Solving the system



Preconditioning

Let K0 be matrix of deterministic counterpart with k0 (x) = E (k (x , ω))

• block-diagonal (mean field) preconditioner: P = I ⊗ K0

Powell, Elman: Block-Diagonal Preconditioning for Spectral Stochastic

Finite-Element Systems. 2009

• kronecker proconditioner: P = G ⊗ K0, G =
∑Mk

m=1 Gm
trace(KT

mK0)
trace(KT

0 K0)

Ullmann: A Kronecker Product Preconditioner for Stochastic Galerkin Finite

Element Discretizations. 2010

• hirearchical Schur preconditioner (specific matrices Gm)

Soused́ık, Ghanem, Phipps: Hierarchical Schur Complement Preconditioner

for the Stochastic Galerkin Finite Element Methods. 2014
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Reduced basis method

Solution of the original system can be prohibitively difficult

Mk∑
m=1

KmuGT
m =

Mb∑
m=1

kmg
T
m

• due to the size of bases Vh and VK

• remedy can be the solution only on some subspace (reduced basis)

• it make sense to create the reduced basis of Vh (it is the larger one and we have

tools to create a meaningful subspace of it)

• system with the reduced basis should fulfill all the conditions needed to be

well-posed (e.g. discrete inf-sup condition)

• for SPD problems, we can pick any linearly independent reduced basis W and obtain

a valid system
Mk∑
m=1

W TKmW ũGT
m =

Mb∑
m=1

W Tkmg
T
m
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Reduced basis method

There are different methods for creating a reduced basis. For SPD systems it can be

utilized

• Monte Carlo sampling → W is constructed from the solutions

• Reduced Rational Krylov subspace method, generating rational Krylov subspace

from matrices Km

In case of e.g. saddle point matrices

• we can use Monte Carlo sampling

• need to assure discrete inf-sup condition

• can be done with enriching the reduced basis with supremizer functions with respect

to original space Vh
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Reduced basis method

1: l = 0, W0 = ∅, R0 =
∑Mb

m=1 kmg
T
m

2: while ∥Rl∥ / ∥R0∥ > ε

3: l = l + 1

4: 1○ propose an enhancement of RB: Vl

5: Wl = orth ([Wl−1,Vl ])

6: 2○ find y l as a solution of RB system

Mk∑
m=1

W T
l KmWly lG

T
m =

Mb∑
m=1

W T
l kmg

T
m

7: 3○ compute ∥Rl∥

∥Rl∥ =

∥∥∥∥∥
Mk∑
m=1

KmWly lG
T
m −

Mb∑
m=1

kmg
T
m

∥∥∥∥∥
8: end

9: return u ≈ ũ l = Wly l
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Monte Carlo sampling for the construction of RB

1. draw NMC samples Z1, . . . ,ZNMC
of random vector Z

2. for each Zj assemble and solve the reduced system

W T
l AjWl ũj = W T

l bj

3. compute indicators (higher number = better sample)

fZ (Z j) ∥AjWl ũj − bj∥2

4. select P (for simplicity, we use P = 1) highest values of identificators and

compute solutions at corresponding samples Zj

Ajuj = bj

5. use the collected solutions to expand the reduced basis Wl and check if the

expanded reduced basis is good enough
Michal Béreš SGM for PDEs with uncertainties 39/61



Monte Carlo sampling - improved sampling

Computing reduced solutions and their residuals at samples Z j is costly ⇒ avoid

samples around those already contributing to RB

f̃l (Z ) ∝ f (Z ) min
i=1,...,l

wi (Z ) ,wi (Z ) =
(
1− exp

(
−∥Z − Xi∥2Σ−1 /2

))β
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Monte Carlo method for the RB construction
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10-11
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Figure 1: Comparison of convergence of greedy MC with the “best” scenario (basis obtained

via SVD of the solution) and basis consisting of solutions in sparse grid points
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MC error indicators and adaptive polynomial selection

• L2
(
Ω,H1

)
error (“true error”), error approximated via 1000 MC samples

• ε1: estimation of L2
(
Ω,H1

)
error between the SGM solution and the path-wise

solution obtained from all samples used for RB construction

• ε2: estimation of L2
(
Ω,H1

)
error between RB reduced solution and path-wise

solution obtained from P samples prepared to be added to the RB at the current

iteration

• ε3: smoothed ε2 via moving geometric average with window of length 5variables

Zi , it can be easily constructed as product of orthogonal polynomials on each

variable Zi

ε2/ε3 does not require the reduced solution of the SGM system (and the polynomial

basis) → we can build reduced basis independently of the discretization of the

stochastic space
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GMC error indicators and adaptive polynomial selection
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Figure 2: Two phase solution of SGM problem with adaptive polynomial degree selection.

Left: phase 1 - construction of RB; Right: phase 2 - selection of maximum polynomial degree
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Tensor train approximation

• can be used if we use tensor polynomials, the random vector Z consist of
independent random variables, and the input data are separable (including Z )

• i.e. matrix and rhs of the SGM system can be expressed in the canonical form of the

M + 1 dimensional tensor (M is number of random variables)

• TT approximation is stable “low-rank” approximation of the higher dimensional

tensor (counterpart of the SVD for matrices)

• TT-toolbox used for the computation, specifically the Alternating minimal energy

method for the TT approximation of the solution of linear system

• implicitly preconditioned system was solved

• using mean field preconditioner
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Tensor train approximation

three problem settings: S1: σ = 0.3, µ = 0;

S2: σ = (0.1, 0.1, 0.1, 0.1, 0.3, 0.3, 0.1, 0.1, 0.1, 0.1) , µ = (0, 0, 0, 0,−5,−5, 0, 0, 0, 0);

S3: σ = (0.01, 0.01, 0.01, 0.01, 0.3, 0.3, 0.01, 0.01, 0.01, 0.01) , µ = (0, 0, 0, 0,−10,−10, 0, 0, 0, 0)

10-1 100 101 102 103

10-6

10-5

10-4

10-3

10-2

104 105 106 107 108 109
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10-5

10-4

10-3

10-2

Figure 3: Comparison of TT approximation and CG solution using complete polynomial basis.

Left: computational time; Right: memory size of the solution
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Acceleration of systems solutions using deflation

• using conjugate gradients (CG) as the solved systems are SPD

• deflated CG (DCG) takes an additional parameter in the form of the deflation
basis W

• W should be able to describe the sought solution reasonably well

• DCG looks for the solution only in the complement of W by projecting the residual

(or the preconditioned residual) using the projector

P = I −W
(
W TAW

)−1
W TA

during the CG routine

• good choice of the deflation basis W is the current RB
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Acceleration of systems solutions using deflation

5 10 15 20 25 30 35 40
100

101

102

103

Figure 4: Comparison of mean number of CG iterations for the solution of deterministic

counterparts

• over 80 % of iterations saved across the different approaches (RRKS, GMC),

problem settings, and target precision
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Use of SGM solution



Mean value and standard deviation of the solution

SGM solution can be easily used for the calculation of mean and variance (standard

deviation) of resulting random field

• we assume solution in the form

u (x ,Z ) =

ND∑
i=1

NS∑
j=1

ui ,jφi (x)ψj (Z )

and ψ1 (Z ) = 1

• mean is

E (u (x ,Z )) =

ND∑
i=1

ui ,1φi (x)

• variance is

Var (u (x ,Z )) =

NS∑
j=2

(
ND∑
i=1

ui ,jφi (x)

)2
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Evaluating at samples - deterministic counterpart approximate

Once we have SG solution, we can easily create approximations of the deterministic

counterparts

• we just need to evaluate the polynomials ψj (Z )

• recurrent formulas are very useful for the evaluation of ψj (Z )

• for the solution reshaped into matrix u and matrix of evaluated polynomials in

samples Z i : Ψ =
[
ψ
(
Z 1
)
, . . .

]
, the approximations of deterministic counterparts

are columns of uΨ

• all of the steps are straightforwardly vectorized or parallelized

Michal Béreš SGM for PDEs with uncertainties 49/61



Example - TSX experiment



Problem setting

Stationary Darcy flow, D = (0, 100)× (0, 100) \ E (E is ellipse with center [50, 50] and

height 2× 1.75 and width 2× 2.1875)
−divx (k (x ,Z )∇xu (x ,Z )) = 0, ∀x ∈ D,Z ∈ R3

u (x ,Z ) = 3 · 106, ∀x ∈ Γ1,Z ∈ R3

u (x ,Z ) = 0, ∀x ∈ Γ2,Z ∈ R3

,

where

k (x ,Z ) =
3∑

i=1

1Ωi
(x) 10Zi

Z1 ∼ N
(
µ = −16, σ = 1

3

)
, Z1 ∼ N

(
µ = −18, σ = 1

3

)
, Z1 ∼ N

(
µ = −21, σ = 1

3

)
Γ1 is outer boundary of the rectangle, Γ2 is boundary of cut-off ellipse
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Problem setting

Zoom around the cut-off with marked measuring points
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Mean value
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Standard deviation
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Distribution of pressure in measuring points
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Distribution of pressure in measuring points
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Geometry - cutoff and behaviour on a line

49 49.5 50 50.5 51
x [m]

51.5
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52.5
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y 
[m

]
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Behaviour on vertical line
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Behaviour on vertical line - distribution
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Behaviour on vertical line - correlation
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Distribution in selected points
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The End

Thank you for your attention!
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