
On the Algebraic Error in Numerical Solution of Partial
Differential Equations – Part I

Jan Papež*

Seminar on Numerical Analysis, January 25–29, 2021
* Institute of Mathematics of the CAS

Structure of the lectures

Part I Motivation, illustrations, and several topics related to the algebraic error and
(inexact) numerical solution of PDEs

Part II "Estimating algebraic error using flux reconstructions"
→ construction of estimators that provide guaranteed upper bounds on the error,
allow for local estimation, and involve no unknown constants

2/61

Acknowledgement

The presented results are joint work with

Zdeněk Strakoš
Martin Vohralík
Ani Anciaux-Sedrakian
Laura Grigori
Zakariae Jorti
Jörg Liesen
Ani Miraçi
Uli Rüde
Barbara Wohlmuth
Soleiman Yousef

3/61

Outline

Introduction, notation, and motivation

How algebraic error can look like

Algebraic error and residual-based error estimator

Preconditioning as transformation of the discretization basis

Backward interpretation of the algebraic error

Re-use of error estimators

4/61

Phases of the solution process in numerical PDEs

Real-world problem

Mathematical model (PDE + BC)

Algebraic problem

Approximation to the solution

modeling
error of the model

discretization
discretization error

algebraic solution
algebraic error (truncation + rounding)

5/61

Phases of the solution process in numerical PDEs

Real-world problem

Find u ∈ V : a(u, v) = 〈f , v〉 ∀v ∈ V

Find uh ∈ Vh: a(uh, vh) = 〈f , vh〉 ∀vh ∈ Vh

AU = F, uh = ΦU

Approximation Ui ≈ U, ui
h = ΦUi

modeling
error of the model

discretization, Vh ⊂ V with the basis Φ
discretization error u − uh

algebraic solution
algebraic error uh − ui

h

6/61

Solution is a two-way process

problem to solve (approximate)
properties
a priori information

validation of the result

For example, for the algebraic solution phase:

AU = F
A is SPD
we want to minimize the A-norm of the error

computing error estimators
checking stop. criterion

7/61

Solution is a two-way process

problem to solve (approximate)
properties
a priori information

validation of the result

For example, for the algebraic solution phase:

AU = F
A is SPD
we want to minimize the A-norm of the error

computing error estimators
checking stop. criterion

7/61

Solution is a two-way process

problem to solve (approximate)
properties
a priori information

validation of the result

For example, for the algebraic solution phase:

AU = F
A is SPD
we want to minimize the A-norm of the error

computing error estimators
checking stop. criterion

−→
compute an approximation

(using a proper method, implementation) −→ 7/61

Solution is a two-way process

problem to solve (approximate)
properties
a priori information

validation of the result

For example, for the algebraic solution phase:

AU = F
A is SPD
we want to minimize the A-norm of the error

computing error estimators
checking stop. criterion

−→
compute an approximation

(using a proper method, implementation) −→ 7/61

Solution is a two-way process

problem to solve (approximate)
properties
a priori information

validation of the result

For example, for the algebraic solution phase:

AU = F
A is SPD
we want to minimize the A-norm of the error
preconditioner

computing error estimators
checking stop. criterion

−→
compute an approximation

(using a proper method, implementation) −→ 7/61

Message of the lectures

• The algebraic error can substantially differ from the errors of other origin. In particular, its
spatial distribution can be significantly different from the discretization error.

• For systems with a sparse matrix arising from FEM discretizations, the algebraic solution
accounts for global interactions in the discretization domain.

• Theoretical results based on the assumption of exact algebraic solution should not be used
for computed approximations. A derivation (or revision) of results that take into account
inexact algebraic computations can be more difficult and/or the results might be weaker.

• An efficient solution procedure requires thorough understanding and interaction between all
phases of the solution, such as discretization, preconditioning, algebraic solution, and error
estimation.

8/61

For the sake of simplicity, we will for illustration (mostly) consider Poisson problem with
homogeneous Dirichlet boundary condition

a(u, v) ≡ (∇u,∇v), V ≡ H1
0 (Ω),

and conforming FEM discretization Vh ⊂ V by continuous piecewise polynomial functions.

The errors then satisfy

u − ui
h︸ ︷︷ ︸

total error
= u − uh︸ ︷︷ ︸

discretization error
+ uh − ui

h︸ ︷︷ ︸
algebraic error

and
‖∇(u − ui

h)‖2 = ‖∇(u − uh)‖2 + ‖∇(uh − ui
h)‖2.

9/61

How algebraic error can look like

J. Papež, J. Liesen, Z. Strakoš:
Distribution of the discretization and algebraic error in numerical solution of
partial differential equations.
Linear Algebra Appl. 449 (2014), pp. 89–114.

10/61

Spatial distribution of the errors of different origin (1D)

1D Poisson problem, uniform partition with 19 nodes, P1 FEM.

0 0.5 1

×10-3

-2

0

2

4

0 0.5 1

×10-3

-5

0

5

Left: discretization error u − uh . Right: algebraic error uh − u9
h (dashed-dotted line) and total

error u − u9
h (solid line).

‖uh − u9
h‖a = 1.23× 10−3 < 6.81× 10−3 = ‖u − uh‖a

11/61

Spatial distribution of the errors of different origin (2D)

−1 −0.5 0 0.5 1 −1

0

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1
0

1 −1

0

1−4

−2

0

2

4

x 10
−4

Exact solution u (left) and the discretization error u − uh (right) in the Poisson model problem
on the L-shaped domain.

12/61

Spatial distribution of the errors of different origin (2D)

−1
0

1 −1

0

1−4

−2

0

2

4

x 10
−4

−1
0

1 −1

0

1−4

−2

0

2

4

x 10
−4

Algebraic error uh − ui
h (left) and the total error u − ui

h (right). Here

‖∇(uh − ui
h)‖ < 0.1 ‖∇(u − uh)‖.

13/61

Algebraic error and
residual-based error estimator

J. Papež and Z. Strakoš.
On a residual-based a posteriori error estimator for the total error.
IMA Journal of Numerical Analysis, 38(3):1164–1184, Sep 2017.

J. Papež.
Algebraic Error in Matrix Computations in the Context of Numerical Solution of
Partial Differential Equations.
PhD thesis, Charles University, Prague, November 2016.

14/61

Residual-based error estimator – notation

In this part, we consider a discretization using the piecewise affine conforming finite elements.

We denote by

• Th the triangulation of Ω with the nodes N and edges E ,
• ϕz , z ∈ N , the hat-function with the support ωz (the patch).

Define the oscillations of the source term f ∈ L2(Ω)

osc ≡
(∑

z∈N
|ωz | ‖f −mean(f , ωz)‖2

ωz

)1/2
,

and for wh ∈ Vh the edge residual measuring the jumps of a piecewise constant function ∇wh

over the inner edges
J(wh) ≡

(∑
E∈E\∂Ω

|E | ‖[∇wh · nE]‖2
E

)1/2
.

15/61

Residual-based error estimator

For the Galerkin solution uh there exists a factor C > 0 depending on the minimal angle of the
triangulation such that

‖∇(u − uh)‖2 ≤ C
(
J2

h (uh) + osc2) ;

see, e.g., [Carstensen (1999)].

The proof uses the so-called Clément quasi-interpolation operator

I : L1(Ω)→ Vh .

16/61

Bounding the total error

[Becker, Mao (2009), Lemma 3.1]:

‖∇(u − wh)‖2 ≤ C
(
J2

h (wh) + osc2)+ 2 ‖∇(uh − wh)‖2 .

Proof: “The upper bound with wh = uh has been proven by [Carstensen (1999)] introducing a
weighted Clément-type quasi-interpolation operator. The generalization to wh 6= uh follows from
the triangle inequality.”

[Arioli, Georgoulis, Loghin (2013), proof of Theorem 3.3]:
‖∇(u − wh)‖2 ≤ 2C2.2

(
J2

h (wh) + õsc2)+ (1 + 2C2.2C3.1)‖∇(uh − wh)‖2 .

In the numerical experiments they empirically set C2.2 := 40, C3.1 := 10.

17/61

Bounding the total error

[Becker, Mao (2009), Lemma 3.1]:

‖∇(u − wh)‖2 ≤ C
(
J2

h (wh) + osc2)+ 2 ‖∇(uh − wh)‖2 .

Proof: “The upper bound with wh = uh has been proven by [Carstensen (1999)] introducing a
weighted Clément-type quasi-interpolation operator. The generalization to wh 6= uh follows from
the triangle inequality.”

[Arioli, Georgoulis, Loghin (2013), proof of Theorem 3.3]:
‖∇(u − wh)‖2 ≤ 2C2.2

(
J2

h (wh) + õsc2)+ (1 + 2C2.2C3.1)‖∇(uh − wh)‖2 .

In the numerical experiments they empirically set C2.2 := 40, C3.1 := 10.

17/61

Revised bound

Elaborating on [Carstensen (1999)], we can show that

‖∇(u − wh)‖2 ≤ C(J2
h (wh) + osc2) + 2 C̃2

intp(wh) ‖∇(uh − wh)‖2 .

with
C̃intp(wh) ≡ ‖∇(Iu − Iwh)‖

‖∇(u − wh)‖ .

A priori bound [Carstensen (1999), Theorem 3.1]:
There exists a factor Cintp > 0 depending only on the triangulation T such that, for all
w ∈ H1

0 (Ω),
‖∇Iw‖ ≤ Cintp‖∇w‖ .

This gives Cintp ≥ C̃intp(wh) , for any wh ∈ Vh.

18/61

Revised bound

Elaborating on [Carstensen (1999)], we can show that

‖∇(u − wh)‖2 ≤ C(J2
h (wh) + osc2) + 2 C̃2

intp(wh) ‖∇(uh − wh)‖2 .

with
C̃intp(wh) ≡ ‖∇(Iu − Iwh)‖

‖∇(u − wh)‖ .

A priori bound [Carstensen (1999), Theorem 3.1]:
There exists a factor Cintp > 0 depending only on the triangulation T such that, for all
w ∈ H1

0 (Ω),
‖∇Iw‖ ≤ Cintp‖∇w‖ .

This gives Cintp ≥ C̃intp(wh) , for any wh ∈ Vh.

18/61

Solution-independent factor and overestimation

The factor Cintp represents the worst-case scenario and one may expect that most likely
Cintp � C̃intp(wh) .

Using the discussion in [Carstensen (2006), Section 2], for a square domain Ω, homogeneous
Dirichlet BC and a shape-regular mesh, there holds

Cintp ≈ 6 .

In general, “it may be very large for small angles in the triangulation”.

19/61

Numerical illustration

Poisson problem on the square Ω ≡ (−1, 1)× (−1, 1), Delaunay triangulation with 1368
elements and with the minimal angle of the mesh equal to 35.9° (the average of the minimal
angles of the elements is 50.3°). We recall, that in this setting Cintp ≈ 6.

The exact solution is set as

u(x , y) = (x − 1)(x + 1)(y − 1)(y + 1) ,

and we plot C̃intp(ui
h) for the approximations ui

h generated by the conjugate gradient method
with zero initial vector for solving the discretized problem.

20/61

Numerical illustration

Poisson problem on the square Ω ≡ (−1, 1)× (−1, 1), Delaunay triangulation with 1368
elements and with the minimal angle of the mesh equal to 35.9° (the average of the minimal
angles of the elements is 50.3°). We recall, that in this setting Cintp ≈ 6.

0 5 10 15 20 25 30
CG iteration

0

0.2

0.4

0.6

0.8

1

1.2

C̃
in
tp
(v

h
)

The factor C̃intp(ui
h) for the approximations ui

h generated in the iterations of the conjugate
gradient method. 20/61

Comments

The difference in the revised bound may seem for the given simple model problem only technical
with preserving the structure of the estimate. Even here, the difference in the size of the
multiplicative factors can be substantial.

There is, however, no guarantee, in general, that the structure of the estimates taking into
account rigorously algebraic errors remains the same as the structure of the estimates based on
the Galerkin orthogonality.

Moreover, providing a guaranteed and meaningful upper bound for the energy norm of the
algebraic error is a highly nontrivial challenge.

21/61

Comments

The difference in the revised bound may seem for the given simple model problem only technical
with preserving the structure of the estimate. Even here, the difference in the size of the
multiplicative factors can be substantial.

There is, however, no guarantee, in general, that the structure of the estimates taking into
account rigorously algebraic errors remains the same as the structure of the estimates based on
the Galerkin orthogonality.

Moreover, providing a guaranteed and meaningful upper bound for the energy norm of the
algebraic error is a highly nontrivial challenge.

21/61

Adaptive mesh refinement based on EST(ui
h)

For simplicity, we denote EST(wh) ≡ (J2
h (wh) + osc2)1/2.

• EST(uh) bounds the discretization error and allows its local estimation. The adaptive mesh
refinement based on the associated error indicators has been studied and mathematically
justified, e.g. in [Morin et al. (2002)].

• The efficiency of adaptive procedures based on EST(ui
h) remains an open question. Does

EST(ui
h) indicate the parts of the computational domain where the discretization error is

large?
• EST(wh) can be evaluated locally. Algebraic error?

‖∇(u − ui
h)‖2 ≤ C · EST2(ui

h) + Cintp ‖∇(uh − ui
h)‖2 .

22/61

Adaptive mesh refinement based on EST(ui
h)

Adaptive mesh refinement (1 step)
SOLVE → ESTIMATE → MARK → REFINE

Numerical experiment
We compare two sequences of meshes generated by AFEM:

1. In SOLVE, we compute the Galerkin solution uh and refine the mesh using the
estimator EST(uh).

2. In SOLVE we compute (using CG) an approximation ui
h with

‖∇(uh − ui
h)‖2 ≤ 0.01‖∇(u − uh)‖2

(here uh in general differs from case 1. because the mesh can be different). Then we evaluate
EST(ui

h) and use it in marking and mesh refinement.

Finally, we compare the meshes after some number of AFEM steps and we plot the decrease of
the discretization error for both sequences.

23/61

Adaptive mesh refinement based on EST(ui
h)

Adaptive mesh refinement (1 step)
SOLVE → ESTIMATE → MARK → REFINE

Numerical experiment
We compare two sequences of meshes generated by AFEM:

1. In SOLVE, we compute the Galerkin solution uh and refine the mesh using the
estimator EST(uh).

2. In SOLVE we compute (using CG) an approximation ui
h with

‖∇(uh − ui
h)‖2 ≤ 0.01‖∇(u − uh)‖2

(here uh in general differs from case 1. because the mesh can be different). Then we evaluate
EST(ui

h) and use it in marking and mesh refinement.

Finally, we compare the meshes after some number of AFEM steps and we plot the decrease of
the discretization error for both sequences.

23/61

Adaptive mesh refinement based on EST(ui
h)

Adaptive mesh refinement (1 step)
SOLVE → ESTIMATE → MARK → REFINE

Numerical experiment
We compare two sequences of meshes generated by AFEM:

1. In SOLVE, we compute the Galerkin solution uh and refine the mesh using the
estimator EST(uh).

2. In SOLVE we compute (using CG) an approximation ui
h with

‖∇(uh − ui
h)‖2 ≤ 0.01‖∇(u − uh)‖2

(here uh in general differs from case 1. because the mesh can be different). Then we evaluate
EST(ui

h) and use it in marking and mesh refinement.

Finally, we compare the meshes after some number of AFEM steps and we plot the decrease of
the discretization error for both sequences. 23/61

Adaptive mesh refinement based on EST(ui
h)

The difference in the adaptively refined meshes after 13 (left) and 19 (right) adaptive
refinements. 24/61

Adaptive mesh refinement based on EST(ui
h)

number of mesh vertices

102 103 104

d
is
c
r
e
t
iz
a
t
io
n
e
r
r
o
r

10-2

10-1

AFEM(*)

AFEM(CG)

AFEM step
2 4 6 8 10 12 14 16 18

n
u
m
b
er

of
m
es
h
ve
rt
ic
es

102

103

104

Left: the decrease of the discretization error norm in adaptive FEM that is based on EST(uh)
(black) and EST(ui

h) (red), respectively. Right: the corresponding number of degrees of freedom
in refinement steps.

25/61

Adaptive mesh refinement based on EST(ui
h)

The difference in the adaptively refined meshes after 35 (left) and 47 (right) adaptive refinements
26/61

Adaptive mesh refinement based on EST(ui
h)

number of mesh vertices

102 103 104

d
is
c
r
e
t
iz
a
t
io
n
e
r
r
o
r

0.4

0.9

2

AFEM(*)

AFEM(CG)

AFEM step
5 10 15 20 25 30 35 40 45

n
u
m
b
er

of
m
es
h
ve
rt
ic
es

102

103

104

Left: the decrease of the discretization error norm in adaptive FEM that is based on EST(uh)
(black) and EST(ui

h) (red), respectively. Right: the corresponding number of degrees of freedom
in refinement steps.

27/61

Preconditioning as
transformation of the
discretization basis

J. Málek and Z. Strakoš.
Preconditioning and the conjugate gradient method in the context of solving
PDEs
volume 1 of SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2015.

J. Papež.
Algebraic Error in Matrix Computations in the Context of Numerical Solution of
Partial Differential Equations.
PhD thesis, Charles University, Prague, November 2016.

28/61

Algebraic preconditioning

AU = F

AtUt = Ft

Ui ≈ U

transformation of the algebraic system

algebraic solution

29/61

Preconditioning as transformation of the discretization basis

Find u ∈ V : a(u, v) = 〈f , v〉 ∀v ∈ V

AU = F, uh = ΦU ∈ Vh

AtUt = Ft

Ui ≈ U, ui
h = ΦUi

discretization, Vh ⊂ V with the basis Φ

transformation of the algebraic problem

algebraic solution

30/61

Preconditioning as transformation of the discretization basis

Find u ∈ V : a(u, v) = 〈f , v〉 ∀v ∈ V

AU = F, uh = ΦU ∈ Vh

AtUt = Ft

Ui ≈ U, ui
h = ΦUi

discretization, Vh ⊂ V with the basis Φ

transformation of the algebraic problem

algebraic solution

Relationship between the preconditioning and the choice of the discretization basis Φ?

31/61

PCG in Hilbert space V

We will now briefly recall results of [Málek, Strakoš (2015)]. We will proceed as follows

1. given PDE in an operator equation, define PCG in (infinite-dimensional) Hilbert space V ,
2. discretize V using Vh ⊂ V with a basis Φ,
3. write the algebraic (finite-dimensional) formulation of PCG.

Then, we will see that

• this procedure gives us naturally a preconditioner M,
• the preconditioner M, the inner product in V (or in Vh), and the choice of the discretization

basis Φ are closely related.

32/61

PCG in Hilbert space V

We will now briefly recall results of [Málek, Strakoš (2015)]. We will proceed as follows

1. given PDE in an operator equation, define PCG in (infinite-dimensional) Hilbert space V ,
2. discretize V using Vh ⊂ V with a basis Φ,
3. write the algebraic (finite-dimensional) formulation of PCG.

Then, we will see that

• this procedure gives us naturally a preconditioner M,

• the preconditioner M, the inner product in V (or in Vh), and the choice of the discretization
basis Φ are closely related.

32/61

PCG in Hilbert space V

We will now briefly recall results of [Málek, Strakoš (2015)]. We will proceed as follows

1. given PDE in an operator equation, define PCG in (infinite-dimensional) Hilbert space V ,
2. discretize V using Vh ⊂ V with a basis Φ,
3. write the algebraic (finite-dimensional) formulation of PCG.

Then, we will see that

• this procedure gives us naturally a preconditioner M,
• the preconditioner M, the inner product in V (or in Vh), and the choice of the discretization

basis Φ are closely related.

32/61

Basic notation

V is a real (infinite dimensional) Hilbert space with the inner product

(·, ·)V : V × V → R ,

V# is the dual space of bounded linear functionals on V with the duality pairing

〈·, ·〉 : V# × V → R .

PDE problem is described in the form of the functional equation

Au = f , A : V → V#, u ∈ V , f ∈ V# (*)

where A is linear, bounded, coercive, and self-adjoint w.r.t. the duality pairing 〈·, ·〉 . In our
setting Au = a(u, ·).

33/61

Riesz map and operator preconditioning

For each f ∈ V# there exists a unique τ f ∈ V such that

〈f , v〉 = (τ f , v)V for all v ∈ V .

In this way the inner product (·, ·)V determines the Riesz map

τ : V# → V .

The transformation of (*) using the Riesz map gives

τAu = τ f , τA : V → V , u ∈ V , τ f ∈ V ,

which is called operator preconditioning. Key property: we can compute powers of τA, which is
needed to build Krylov subspaces.

34/61

Preconditioned CG in Hilbert spaces

r0 = f −Au0 ∈ V#, p0 = τ r0 ∈ V

un = un−1 + αn−1pn−1 ,

αn−1 = 〈rn−1, τ rn−1〉
〈Apn−1, pn−1〉

= (τ rn−1, τ rn−1)V
(τApn−1, pn−1)V

,

rn = rn−1 − αn−1Apn−1 ,

pn = τ rn + βnpn−1 ,

βn = 〈rn, τ rn〉
〈rn−1, τ rn−1〉

= (τ rn, τ rn)V
(τ rn−1, τ rn−1)V

.

The same formulas can be used for PCG in Vh.

35/61

Discretization and finite dimensional CG

Φ = {φ1, . . . , φN}
basis of the finite-dimensional subspace Vh ⊂ V ,

Φ# = {φ#
1 , . . . , φ

#
N}

canonical basis of the dual V#
h , Φ#Φ = I .

Using the coordinates in Φ and in Φ# ,

〈f , v〉 = 〈Φ#F,ΦV〉 = V∗F ,
(u, v)Vh = (ΦU,ΦV)Vh = V∗MU ,
Au = AΦU = Φ#AU ,
τ f = τΦ#F = ΦM−1 F ;

where
M = [Mij] = [(φj , φi)Vh] ,
A = [Aij] = [〈Aφj , φi〉] , i , j = 1, . . . ,N .

36/61

Preconditioned algebraic CG

Preconditioned CG

With f = Φ# F , un = ΦUn , pn = ΦPn , rn = Φ# Rn we get the standard preconditioned
algebraic CG with the preconditioner M .

Unpreconditioned CG is in this setting an oxymoron!
Unpreconditioned CG, i.e. M = I , corresponds to the basis Φ orthonormal w.r.t. the inner
product (·, ·)Vh .

Orthogonalization of the discretization basis

Consider the decomposition M = LL∗, then the transformed discretization basis Φt = Φ (L∗)−1

is orthonormal w.r.t. (·, ·)Vh . Indeed,

(Φt ,Φt)Vh = L−1(Φ,Φ)Vh (L∗)−1 = L−1M(L∗)−1 = I.

37/61

Interpretation of an algebraic preconditioning

Natural question: can we proceed the opposite way, starting from algebraic PCG and arbitrary
SPD preconditioner M̂?

For the algebraic preconditioning with L̂L̂
∗

= M̂ 6= M , the (transformed) discretization basis
Φ̂ = Φ (L̂∗)−1 is not orthonormal w.r.t. (·, ·)Vh .

In order to obtain the interpretation of the algebraic preconditioning M̂ as the transformation of
the basis Φ→ Φ̂, we have to change also the inner product in Vh :

(u, v)Vh = (ΦU,ΦV)Vh = V∗MU ,

has to be replaced by

(u, v)new,Vh
= (Φ̂ Û, Φ̂ V̂)new,Vh

≡ V̂∗Û = V∗M̂U .

38/61

Interpretation of an algebraic preconditioning

Natural question: can we proceed the opposite way, starting from algebraic PCG and arbitrary
SPD preconditioner M̂?

For the algebraic preconditioning with L̂L̂
∗

= M̂ 6= M , the (transformed) discretization basis
Φ̂ = Φ (L̂∗)−1 is not orthonormal w.r.t. (·, ·)Vh .

In order to obtain the interpretation of the algebraic preconditioning M̂ as the transformation of
the basis Φ→ Φ̂, we have to change also the inner product in Vh :

(u, v)Vh = (ΦU,ΦV)Vh = V∗MU ,

has to be replaced by

(u, v)new,Vh
= (Φ̂ Û, Φ̂ V̂)new,Vh

≡ V̂∗Û = V∗M̂U .

38/61

Observations

Algebraic preconditioning associated with the operator preconditioning is equivalent to the
orthogonalization of the discretization basis in the given finite-dimensional Hilbert space Vh .

Algebraic preconditioning can be interpreted as transformation of the discretization basis and, at
the same time, transformation of the inner product in Vh such that the transformed basis Φ̂ is
orthonormal with respect to the transformed inner product.

Even for a sparse preconditioner M = [(φj , φi)Vh], the inverse L−1 of its Cholesky factor is
typically dense. Therefore, the transformed (orthogonalized) basis is of global support.

39/61

Observations

Algebraic preconditioning associated with the operator preconditioning is equivalent to the
orthogonalization of the discretization basis in the given finite-dimensional Hilbert space Vh .

Algebraic preconditioning can be interpreted as transformation of the discretization basis and, at
the same time, transformation of the inner product in Vh such that the transformed basis Φ̂ is
orthonormal with respect to the transformed inner product.

Even for a sparse preconditioner M = [(φj , φi)Vh], the inverse L−1 of its Cholesky factor is
typically dense. Therefore, the transformed (orthogonalized) basis is of global support.

39/61

Sparsity of Cholesky factors

An example of Cholesky factor L of the preconditioner and its transposed inverse (L∗)−1, taken
from [P. 2016] - problem with inhomogeneous diffusion tensor, uniform mesh, Laplace
preconditioner.

40/61

Backward interpretation of the
algebraic error

J. Papež.
Algebraic Error in Matrix Computations in the Context of Numerical Solution of
Partial Differential Equations.
PhD thesis, Charles University, Prague, November 2016.

41/61

Backward interpretation of the algebraic error

AU = F

Ui ≈ U

(A + E)Ui = F + G

algebraic solution perturbation E,G
of the original data

We interpret the algebraic backward errors E,G within the other phases of the solution process.

42/61

Backward interpretation of the algebraic error

Find u ∈ V : a(u, v) = 〈f , v〉 ∀v ∈ V

Find uh ∈ Vh: a(uh, vh) = . . .

AU = F, uh = ΦU

Approximation Ui ≈ U, ui
h = ΦUi

discretization, Vh ⊂ V
with the basis Φ

algebraic solution

(A + E)Ui = F + G

perturbation E,G

uh = Φ̂Ui

transformed
basis Φ̂

43/61

Algebraic backward error

Let the computed algebraic vector Û that approximates U solve the perturbed system

(A + E) Û = F + G .

Our aim is to interpret the perturbations E,G as transformations of the discretization bases.

One can consider possibly different transformations of the discretization and the test bases

Ψ = Φ (I + D) ,
X = Φ (I + H) .

44/61

Transformation of the discretization bases

Let the Galerkin solution uh = ΦU

a(uh, φi) = (f , φi), i = 1, . . . ,N

can be expressed as the Galerkin solution uh = Ψ Û = Φ (I + D) Û of the discrete system with
the transformed bases

a(uh, χi) = (f , χi), i = 1, . . . ,N ,

that results in the linear algebraic system

ÃÛ = F̃ , Ãij = a(ψj , χi) , F̃i = (f , χi) ,

where Ã = (I + H)TA (I + D) and F̃ = (I + H)TF .

45/61

Interpretation of the algebraic error

The computed approximation Û solves the system ÃÛ = F̃ exactly. The algebraic error is
absorbed in the transformed bases Ψ,X .

Identifying the perturbations in
(A + E) Û = F + G

with transformation of the discretization bases gives

A + E = (I + H)TA (I + D) ,
F + G = (I + H)TF .

Three classes of backward errors

• general case, E 6= 0, G 6= 0
• symmetric case, A + E is SPD and D = H
• no perturbation of rhs, G = 0

46/61

Interpretation of the algebraic error

The computed approximation Û solves the system ÃÛ = F̃ exactly. The algebraic error is
absorbed in the transformed bases Ψ,X .

Identifying the perturbations in
(A + E) Û = F + G

with transformation of the discretization bases gives

A + E = (I + H)TA (I + D) ,
F + G = (I + H)TF .

Three classes of backward errors

• general case, E 6= 0, G 6= 0 → not unique transformation
• symmetric case, A + E is SPD and D = H
• no perturbation of rhs, G = 0

46/61

Interpretation of the algebraic error

The computed approximation Û solves the system ÃÛ = F̃ exactly. The algebraic error is
absorbed in the transformed bases Ψ,X .

Identifying the perturbations in
(A + E) Û = F + G

with transformation of the discretization bases gives

A + E = (I + H)TA (I + D) ,
F + G = (I + H)TF .

Three classes of backward errors

• general case, E 6= 0, G 6= 0 → not unique transformation
• symmetric case, A + E is SPD and D = H → does not exist in general
• no perturbation of rhs, G = 0

46/61

Interpretation of the algebraic error

The computed approximation Û solves the system ÃÛ = F̃ exactly. The algebraic error is
absorbed in the transformed bases Ψ,X .

Identifying the perturbations in
(A + E) Û = F + G

with transformation of the discretization bases gives

A + E = (I + H)TA (I + D) ,
F + G = (I + H)TF .

Three classes of backward errors

• general case, E 6= 0, G 6= 0 → not unique transformation
• symmetric case, A + E is SPD and D = H → does not exist in general
• no perturbation of rhs, G = 0 → will be illustrated now

46/61

Backward error with G = 0

For G = 0 it is natural to set H = 0 , i.e. to consider the original test functions. This case was
considered in [Gratton, Jiránek, Vasseur (2013)]; [P., Liesen, Strakoš (2014)].

From A + E = A (I + D) we have AD = E and D = A−1E .

The transformed basis Ψ = Φ (I + D) has global support (D is dense)!

47/61

Global support of the transformed basis

1D Poisson model problem,

(A + E) Û = F (i.e. G = 0) .

• E = (F− AÛ) ÛT

‖Û‖2
2
, then D = A−1E = (U− Û) ÛT

‖Û‖2
2
,

• symmetric perturbation Esym with the minimal Frobenius norm

Esym = argmin
{
‖E‖F | E = ET , (A + E) Û = b

}
;

see [Bunch, Demmel, van Loan (1989)].

48/61

Transformed basis

0
5

10
15

20 0

10

20−2

−1

0

1

2

3

x 10
−3

column index
row index 0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

MATLAB surf plot of the transformation matrix D = A−1E (left) and the difference ψj − φj

(right).

49/61

Transformed basis for symmetric perturbation matrix

0
5

10
15

20 0

10

20−0.1

−0.05

0

0.05

0.1

0.15

column index
row index 0 0.2 0.4 0.6 0.8 1

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

MATLAB surf plot of the transformation matrix D = A−1Esym (left) and the difference
ψj − φj (right).

Please note that ‖A−1Esym‖ � ‖A−1E‖ !
50/61

Re-use of error estimators

A. Miraçi, J. Papež, and M. Vohralík.
A Multilevel Algebraic Error Estimator and the Corresponding Iterative Solver with
p-Robust Behavior.
SINUM, 58(5):2856–2884, 2020.

A. Anciaux-Sedrakian, L. Grigori, Z. Jorti, J. Papež, and S. Yousef.
Adaptive solution of linear systems of equations based on a posteriori error
estimators.
Numerical Algorithms, 84(1):331–364, 2020.

51/61

Lower bound on the algebraic error

The algebraic error in Poisson problem satisfy

‖∇(uh − ui
h)‖ = sup

vh∈Vh,‖∇vh‖=1
(∇(uh − ui

h),∇vh)

= sup
vh∈Vh,‖∇vh‖=1

{(f , vh)− (∇ui
h,∇vh)}

and the supremum is attained for vh = (uh − ui
h) / ‖∇(uh − ui

h)‖.

A simple lower bound can be computed as

µ(wh) := |(f ,wh)− (∇ui
h,∇wh)|

‖∇wh‖
.

Clearly, µ(wh) ≈ ‖∇(uh − ui
h)‖ iff wh ≈ C(uh − ui

h).

52/61

Lower bound on the algebraic error

The algebraic error in Poisson problem satisfy

‖∇(uh − ui
h)‖ = sup

vh∈Vh,‖∇vh‖=1
(∇(uh − ui

h),∇vh)

= sup
vh∈Vh,‖∇vh‖=1

{(f , vh)− (∇ui
h,∇vh)}

and the supremum is attained for vh = (uh − ui
h) / ‖∇(uh − ui

h)‖.

A simple lower bound can be computed as

µ(wh) := |(f ,wh)− (∇ui
h,∇wh)|

‖∇wh‖
.

Clearly, µ(wh) ≈ ‖∇(uh − ui
h)‖ iff wh ≈ C(uh − ui

h).

52/61

Lower bound on the algebraic error, cont.

Given the algebraic residual Ri (which is the only quantity we have), we compute its lifting,
ρi

h ∈ Vh, ρi
h = ρi

h(Ri), and estimate the error using µ(ρi
h).

However, when ρi
h is computed, we can also use it to define a new approximation (or consider ρi

h
as a preconditioned residual).

⇒ the lifting ρi
h can be used to relate

• error estimator (lower bound) µ(ρi
h),

• algebraic solver, ui+1
h := ui

h + αρi
h

• preconditioner " Ri 7→ ρi
h ",

and their properties can be studied together.

For example, we studied the robustness of the error estimator and the algebraic solver with
respect to the polynomial degree of the FEM approximation.

53/61

Lower bound on the algebraic error, cont.

Given the algebraic residual Ri (which is the only quantity we have), we compute its lifting,
ρi

h ∈ Vh, ρi
h = ρi

h(Ri), and estimate the error using µ(ρi
h).

However, when ρi
h is computed, we can also use it to define a new approximation (or consider ρi

h
as a preconditioned residual).

⇒ the lifting ρi
h can be used to relate

• error estimator (lower bound) µ(ρi
h),

• algebraic solver, ui+1
h := ui

h + αρi
h

• preconditioner " Ri 7→ ρi
h ",

and their properties can be studied together.

For example, we studied the robustness of the error estimator and the algebraic solver with
respect to the polynomial degree of the FEM approximation.

53/61

Lower bound on the algebraic error, cont.

Given the algebraic residual Ri (which is the only quantity we have), we compute its lifting,
ρi

h ∈ Vh, ρi
h = ρi

h(Ri), and estimate the error using µ(ρi
h).

However, when ρi
h is computed, we can also use it to define a new approximation (or consider ρi

h
as a preconditioned residual).

⇒ the lifting ρi
h can be used to relate

• error estimator (lower bound) µ(ρi
h),

• algebraic solver, ui+1
h := ui

h + αρi
h

• preconditioner " Ri 7→ ρi
h ",

and their properties can be studied together.

For example, we studied the robustness of the error estimator and the algebraic solver with
respect to the polynomial degree of the FEM approximation.

53/61

Adaptive preconditioner based on local error indicators

Motivation
When the algebraic error (and its local distribution) is estimated, can we do anything to
speed-up the following algebraic computation?

Analogy in the discretization phase: adaptive mesh refinement

Crucial difference
(In our setting) the discretization error can be bounded by the interpolation error, while the
algebraic error is typically of a global origin.

I am not aware of any procedure to reduce the algebraic error locally ⇒ only heuristic approaches.

54/61

Adaptive preconditioner based on local error indicators

Motivation
When the algebraic error (and its local distribution) is estimated, can we do anything to
speed-up the following algebraic computation?

Analogy in the discretization phase: adaptive mesh refinement

Crucial difference
(In our setting) the discretization error can be bounded by the interpolation error, while the
algebraic error is typically of a global origin.

I am not aware of any procedure to reduce the algebraic error locally ⇒ only heuristic approaches.

54/61

Adaptive preconditioner based on local error indicators

Our procedure

1. start PCG with a given preconditioner
2. at some iteration, evaluate (local) error indicators and identify the domain Ω1 with the set L

of the degrees of freedom, where the algebraic error is (expected to be) large
3. "treat" the part of the matrix associated with L:

• Schur complement approach (leads to solving a smaller but possibly dense system)
• build a new preconditioner and a new initial guess

4. continue PCG iterations (either for Schur system or for the original system with the new
preconditioner and the initial guess)

Here "treat" means that we assure that the residual associated to DOFs in L vanishes in the
subsequent iterations.

The procedure requires the inversion (or Cholesky factors) of the block AL - the part of the
original matrix associated with L. 55/61

Adaptive preconditioner - num. experiment I

Galerkin solution, algebraic error (energy norm on the elements) after 20 initial PCG iterations

56/61

Adaptive preconditioner - num. experiment I

0 50 100 150 200 250

Iterations

10
-4

10
-2

10
0

E
rr

o
r

Process 1

Process 2:
1

Process 2:
2

Convergence of the energy norm of the algebraic error
57/61

Adaptive preconditioner - num. experiment II

A test case with inhomogeneous diffusion tensor (contrast = 9e5)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

2

1

1

1.5

E
rr

o
r

(i
n

 d
e

c
im

a
l
lo

g
)

Galerkin solution, algebraic error (energy norm on the elements) after 20 initial PCG iterations

58/61

Adaptive preconditioner - num. experiment II

0 100 200 300 400

Iterations

10
-5

10
0

E
rr

o
r

Process 1

Process 2:
1

Process 2:
2

Convergence of the energy norm of the algebraic error
59/61

Conclusion (of Part I)

I would like to recall the "message of the lecture" set at the beginning:

• The algebraic error can substantially differ from the errors of other origin. In particular, its
spatial distribution can be significantly different from the discretization error.

• For systems with a sparse matrix arising from FEM discretizations, the algebraic solution
accounts for global interactions in the discretization domain.

• Results based on the assumption of exact algebraic solution should not be used for
computed approximations. A derivation (or revision) of theoretical results that take into
account inexact algebraic solution can be more difficult and/or the results might be weaker.

• An efficient solution procedure requires thorough understanding and interaction between all
phases of the solution, such as discretization, preconditioning, algebraic solution, and error
estimation.

60/61

Thank you for your attention!
papez@math.cas.cz

61/61

On the Algebraic Error in Numerical Solution of Partial
Differential Equations
Part II – Estimating algebraic error using flux
reconstructions

Jan Papež*

Seminar on Numerical Analysis, January 25–29, 2021
* Institute of Mathematics of the CAS

Message from Part I

• The algebraic error can substantially differ from the errors of other origin. In particular, its
spatial distribution can be significantly different from the discretization error.

• For systems with a sparse matrix arising from FEM discretizations, the algebraic solution
accounts for global interactions in the discretization domain.

• Theoretical results based on the assumption of exact algebraic solution should not be used
for computed approximations. A derivation (or revision) of results that take into account
inexact algebraic computations can be more difficult and/or the results might be weaker.

• An efficient solution procedure requires thorough understanding and interaction between all
phases of the solution, such as discretization, preconditioning, algebraic solution, and error
estimation.

2/37

Therefore in Part II . . .

• We will present a unified framework for bounding the total and algebraic errors.
• There is no assumption on solving the (large original) system exactly and all the

multiplicative factors can be evaluated.
• The bounds allow for local error estimation (and we can prove their efficiency).

3/37

Outline

Introduction and notation

Upper bound on total error and quasi-equilibrated flux reconstruction

Three algebraic error upper bounds

Construction of fluxes

Numerical results

4/37

Setting and notation

Poisson problem: − div(∇u) = f in Ω, u = 0 on ∂Ω,

Weak solution u ∈ V ≡ H1
0 (Ω),

(∇u,∇v) = (f , v) ∀v ∈ V ,

flux σ ≡ −∇u ∈ H(div,Ω), div σ = f .

FEM discrete approximation uh ∈ Vh ⊂ V ,
(∇uh,∇vh) = (f , vh) ∀vh ∈ Vh .

Algebraic problem, using the basis Φ = {φ1, . . . , φN} of Vh,
AU = F, (A)j` = (∇φ`,∇φj), Fj = (f , φj), uh = ΦU.

Inexact iterative solution Ui ≈ U, ui
h = ΦUi ,

residual Ri = F− AUi .
5/37

Errors and error measure

u − ui
h︸ ︷︷ ︸

total error

= u − uh︸ ︷︷ ︸
discretization error

+ uh − ui
h︸ ︷︷ ︸

algebraic error

Energy norm of the total error

‖∇(u − ui
h)‖ = sup

v∈V ,‖∇v‖=1
(∇(u − ui

h),∇v) = sup
v∈V ,‖∇v‖=1

(f , v)− (∇ui
h,∇v) .

Energy norm of the algebraic error

‖∇(uh − ui
h)‖ = sup

vh∈Vh,‖∇vh‖=1
(∇(uh − ui

h),∇vh) .

Due to Galerkin orthogonality,

‖∇(u − ui
h)‖2 = ‖∇(u − uh)‖2 + ‖∇(uh − ui

h)‖2 .

6/37

Errors and error measure

u − ui
h︸ ︷︷ ︸

total error

= u − uh︸ ︷︷ ︸
discretization error

+ uh − ui
h︸ ︷︷ ︸

algebraic error

Energy norm of the total error

‖∇(u − ui
h)‖ = sup

v∈V ,‖∇v‖=1
(∇(u − ui

h),∇v) = sup
v∈V ,‖∇v‖=1

(f , v)− (∇ui
h,∇v) .

Energy norm of the algebraic error

‖∇(uh − ui
h)‖ = sup

vh∈Vh,‖∇vh‖=1
(∇(uh − ui

h),∇vh) .

Due to Galerkin orthogonality,

‖∇(u − ui
h)‖2 = ‖∇(u − uh)‖2 + ‖∇(uh − ui

h)‖2 .

6/37

Upper bound on the total error

Energy norm of the total error

‖∇(u − ui
h)‖ = sup

v∈V ,‖∇v‖=1
(∇(u − ui

h),∇v) .

For any d ∈ H(div,Ω),

(∇(u − ui
h),∇v) = (f , v)− (∇ui

h,∇v)
= (f , v) + (d,∇v)− (d,∇v)− (∇ui

h,∇v)
= (f − div d, v)− (∇ui

h + d,∇v) .

7/37

Quasi-equilibrated flux reconstruction

We construct representation r i
h ∈ L2(Ω) of the algebraic residual Ri and the approximate flux

di
h ∈ Vh ⊂ H(div,Ω) such that

div di
h = fh − r i

h .

Then

(∇(u − ui
h),∇v) = (f − div di

h, v)− (∇ui
h + di

h,∇v)
= (f − fh, v) + (r i

h, v)− (∇ui
h + di

h,∇v) ,

[Prager, Synge (1947)]

giving
‖∇(u − ui

h)‖ ≤ ηosc + sup
v∈V ,‖∇v‖=1

(r i
h, v) + ‖∇ui

h + di
h‖ .

ηosc data oscillation
supv∈V ,‖∇v‖=1 (r i

h, v) → algebraic error estimate (bound)
‖∇ui

h + di
h‖ discretization error indicator

8/37

Quasi-equilibrated flux reconstruction

We construct representation r i
h ∈ L2(Ω) of the algebraic residual Ri and the approximate flux

di
h ∈ Vh ⊂ H(div,Ω) such that

div di
h = fh − r i

h .

Then

(∇(u − ui
h),∇v) = (f − div di

h, v)− (∇ui
h + di

h,∇v)
= (f − fh, v) + (r i

h, v)− (∇ui
h + di

h,∇v) ,

giving
‖∇(u − ui

h)‖ ≤ ηosc + sup
v∈V ,‖∇v‖=1

(r i
h, v) + ‖∇ui

h + di
h‖ .

ηosc data oscillation
supv∈V ,‖∇v‖=1 (r i

h, v) → algebraic error estimate (bound)
‖∇ui

h + di
h‖ discretization error indicator

8/37

Residual representation

How to construct the representation r i
h ∈ L2(Ω)?

If r i
h is such that

(r i
h, φj) = Ri

j , j = 1, . . . ,N ,

where φj is a basis function of Vh and Ri
j is the associated element of Ri , we have for

vh ∈ Vh ,
(∇(uh − ui

h),∇vh) = (f , vh)− (∇ui
h,∇vh) = (r i

h, vh) .

Then
‖∇(uh − ui

h)‖ = sup
vh∈Vh,‖∇vh‖=1

(r i
h, vh) ≤ sup

v∈V ,‖∇v‖=1
(r i

h, v) .

[Papež, Strakoš, Vohralík (2018)]

9/37

Bound 1: worst-case bound

Using Cauchy–Schwarz and Friedrichs inequalities

(r i
h, v) ≤ ‖r i

h‖ · ‖v‖ ≤ ‖r i
h‖ · CFhΩ‖∇v‖ ,

which gives

worst-case upper bounds:

‖∇(u − ui
h)‖ ≤ ηosc + CFhΩ‖r i

h‖+ ‖∇ui
h + di

h‖

‖∇(uh − ui
h)‖ ≤ + CFhΩ‖r i

h‖

10/37

Residual representation and worst-case bound I

Construction of r i
h = ΦCi ∈ Vh requires solution of

GCi = Ri , (G)j` ≡ (φ`, φj) .

Then
‖Ri‖A−1 = ‖∇(uh − ui

h)‖ ≤ CFhΩ‖r i
h‖ = CFhΩ‖Ri‖G−1

holds for any prescribed Ri . Considering the attainable bound

‖Ri‖2A−1 = (Ri ,A−1Ri) = (G−1/2Ri ,G1/2A−1G1/2G−1/2Ri)

≤ ‖G1/2A−1G1/2‖ · ‖G−1/2Ri‖2 = ‖G1/2A−1G1/2‖ · ‖Ri‖2G−1

and Ri for which the equality is attained,

‖G1/2A−1G1/2‖ ≤ (CFhΩ)2 .

11/37

Residual representation and worst-case bound II

In order to avoid solution of the system with the mass matrix G, we construct the algebraic
residual representation r i

h /∈ Vh, piecewise discontinuous polynomial of degree of uh, locally on
each element.

The bound using r i
h /∈ Vh constructed locally is weaker than the bound from the global

construction, i.e.
‖Ri‖A−1 ≤ CFhΩ‖Ri‖G−1 ≤ CFhΩ‖r i

h‖ .

12/37

Bound 2: Additional iteration steps

iteration step-ti
ui

h

?

r i
h, di

h

ti + ν

ui+ν
h

?

r i+ν
h , di+ν

h

Flux reconstruction in i-th iteration, r i
h is the representation of Ri ,

div di
h = fh − r i

h ,

in (i + ν)-th iteration, r i+ν
h is the representation of Ri+ν ,

div di+ν
h = fh − r i+ν

h .

Then
r i
h = − div di

h + div di+ν
h + r i+ν

h .

[Ern, Vohralík (2013)]

13/37

Bound 2: Upper bounds using additional iterations

Then

(∇(u − ui
h),∇v) = (f − fh, v) + (r i

h, v)− (∇ui
h + di

h,∇v)

= (f − fh, v) + (di
h − di+ν

h ,∇v) + (r i+ν
h , v)− (∇ui

h + di
h,∇v) ,

and

(∇(uh − ui
h),∇vh) = (di

h − di+ν
h ,∇vh) + (r i+ν

h , vh) .

Upper bounds: [Papež, Strakoš, Vohralík (2018)]

‖∇(u − ui
h)‖ ≤ ηosc + ‖di

h − di+ν
h ‖+ CFhΩ‖r i+ν

h ‖+ ‖∇ui
h + di

h‖

‖∇(uh − ui
h)‖ ≤ ‖di

h − di+ν
h ‖+ CFhΩ‖r i+ν

h ‖

crucial question: How to choose ν?
14/37

Bound 2: Upper bounds using additional iterations

Recall:

‖∇(uh − ui
h)‖ ≤ ‖di

h − di+ν
h ‖+ CFhΩ‖r i+ν

h ‖

Crucial question: How to choose ν?

Idea: compare the terms ‖di
h − di+ν

h ‖ and CFhΩ‖r i+ν
h ‖.

Find the smallest ν such that

γrem‖di
h − di+ν

h ‖ ≥ CFhΩ‖r i+ν
h ‖,

where γrem can be set, for example, as γrem = 0.5.

15/37

Bound 2: Upper bounds using additional iterations

Recall:

‖∇(uh − ui
h)‖ ≤ ‖di

h − di+ν
h ‖+ CFhΩ‖r i+ν

h ‖

Crucial question: How to choose ν?

Idea: compare the terms ‖di
h − di+ν

h ‖ and CFhΩ‖r i+ν
h ‖.

Find the smallest ν such that

γrem‖di
h − di+ν

h ‖ ≥ CFhΩ‖r i+ν
h ‖,

where γrem can be set, for example, as γrem = 0.5.

15/37

Bound 2: Upper bounds using additional iterations

Recall:

‖∇(uh − ui
h)‖ ≤ ‖di

h − di+ν
h ‖+ CFhΩ‖r i+ν

h ‖

Crucial question: How to choose ν?

Idea: compare the terms ‖di
h − di+ν

h ‖ and CFhΩ‖r i+ν
h ‖.

Find the smallest ν such that

γrem‖di
h − di+ν

h ‖ ≥ CFhΩ‖r i+ν
h ‖,

where γrem can be set, for example, as γrem = 0.5.

15/37

Bound 2: Upper bounds using additional iterations

0 10 20 30 40 50 60
0

5

10

15

20

25

30

PCG iteration
0 10 20 30 40 50 60

‖
∇
(u

h
−

u
i h
)‖

10-6

10-4

10-2

100

102
PCG convergence

algebraic error

discretization error

Comparison of the number ν of additional iterations; the optimal number (yellow) and the
number due to the overestimation in the worst-case bound (blue)

For this price, we get an upper bound with efficiency close to 1.5 = 1 + γrem.
16/37

Bound 3: construction of an algebraic flux

Constructing ai
h ∈ H(div,Ω) such that

div ai
h = r i

h ,

we have
(r i

h, v) = (div ai
h, v) = −(ai

h,∇v)
giving

sup
v∈V ,‖∇v‖=1

(r i
h, v) ≤ ‖ai

h‖ .

Then
Bounds based on algebraic flux: [Papež, Rüde, Vohralík, Wohlmuth (2020)]

‖∇(u − ui
h)‖ ≤ ηosc + ‖ai

h‖+ ‖∇ui
h + di

h‖

‖∇(uh − ui
h)‖ ≤ ‖ai

h‖

17/37

Bound 3: construction of an algebraic flux

Constructing ai
h ∈ H(div,Ω) such that

div ai
h = r i

h ,

we have
(r i

h, v) = (div ai
h, v) = −(ai

h,∇v)
giving

sup
v∈V ,‖∇v‖=1

(r i
h, v) ≤ ‖ai

h‖ .

Then
Bounds based on algebraic flux: [Papež, Rüde, Vohralík, Wohlmuth (2020)]

‖∇(u − ui
h)‖ ≤ ηosc + ‖ai

h‖+ ‖∇ui
h + di

h‖

‖∇(uh − ui
h)‖ ≤ ‖ai

h‖

17/37

Construction of fluxes

In this part:

• a subspace of H(div,Ω): Raviart–Thomas(–Nédélec) space
• flux reconstruction di

h, div di
h = fh − r i

h
[Braess, Schöberl (2008)]

[Ern, Vohralík (2013)]
• algebraic flux ai

h, div ai
h = r i

h
[Papež, Rüde, Vohralík, Wohlmuth (2020)]

[Papež, Vohralík (2021?)]

18/37

Raviart–Thomas(–Nédélec) functions

For flux (re)constructions we use RTN space

RTNq(K) =
{
v ∈

[
Pq(K)

]d + Pq(K)x
}
⊂ H(div,Ω) .

We set q := p, where p is the degree of FEM approximation. To prove the global and local
efficiency of upper bound on the total error, we need q := p + 1.

⇔

⇔

⇔ • •

Illustration of degrees of freedom for q = 1. In 2D, dim(RTNq(K)) = (q + 1)(q + 3).

19/37

Quasi-equilibrated flux

Goal: construct di
h ∈ H(div,Ω), di

h|K ∈ RTNq(K), div di
h = fh − r i

h.

To obtain a tight bound, we should minimize the error indicator ‖∇uh + di
h‖.

Local construction based on a partition of unity by piecewise affine hat functions corresponding
to each vertex of the mesh,

di
h :=

∑
a∈Vh

di
h,a div di

h,a = ψh,a(fh − r i
h), ‖ψh,a∇ui

h + di
h,a‖ → min .

The local flux di
h,a is given as the solution of

(di
h,a, vh)ωh,a − (γah, div vh)ωh,a = −(ψh,a∇ui

h, vh)ωh,a

(div di
h,a, qh)ωh,a = (f ψh,a −∇ui

h · ∇ψh,a − r i
hψh,a, qh)ωh,a .

Thanks to the compatibility condition

(f ψh,a −∇ui
h · ∇ψh,a − rhψh,a, 1)ωh,a = 0,

we have div di
h = fh − r i

h.

20/37

Quasi-equilibrated flux

Goal: construct di
h ∈ H(div,Ω), di

h|K ∈ RTNq(K), div di
h = fh − r i

h.

To obtain a tight bound, we should minimize the error indicator ‖∇uh + di
h‖.

Local construction based on a partition of unity by piecewise affine hat functions corresponding
to each vertex of the mesh,

di
h :=

∑
a∈Vh

di
h,a div di

h,a = ψh,a(fh − r i
h), ‖ψh,a∇ui

h + di
h,a‖ → min .

The local flux di
h,a is given as the solution of

(di
h,a, vh)ωh,a − (γah, div vh)ωh,a = −(ψh,a∇ui

h, vh)ωh,a

(div di
h,a, qh)ωh,a = (f ψh,a −∇ui

h · ∇ψh,a − r i
hψh,a, qh)ωh,a .

Thanks to the compatibility condition

(f ψh,a −∇ui
h · ∇ψh,a − rhψh,a, 1)ωh,a = 0,

we have div di
h = fh − r i

h.

20/37

Quasi-equilibrated flux

Goal: construct di
h ∈ H(div,Ω), di

h|K ∈ RTNq(K), div di
h = fh − r i

h.

Local construction based on a partition of unity by piecewise affine hat functions corresponding
to each vertex of the mesh,

di
h :=

∑
a∈Vh

di
h,a div di

h,a = ψh,a(fh − r i
h), ‖ψh,a∇ui

h + di
h,a‖ → min .

ωh,a := supp(ψh,a)

• • • •

• •

• •• •

• •

⇔ ⇔ ⇔
⇔⇔

⇔

Degrees of freedom of di
h for q = 1.

The local flux di
h,a is given as the solution of

(di
h,a, vh)ωh,a − (γah, div vh)ωh,a = −(ψh,a∇ui

h, vh)ωh,a

(div di
h,a, qh)ωh,a = (f ψh,a −∇ui

h · ∇ψh,a − r i
hψh,a, qh)ωh,a .

Thanks to the compatibility condition

(f ψh,a −∇ui
h · ∇ψh,a − rhψh,a, 1)ωh,a = 0,

we have div di
h = fh − r i

h.

20/37

Quasi-equilibrated flux

Goal: construct di
h ∈ H(div,Ω), di

h|K ∈ RTNq(K), div di
h = fh − r i

h.

Local construction based on a partition of unity by piecewise affine hat functions corresponding
to each vertex of the mesh,

di
h :=

∑
a∈Vh

di
h,a div di

h,a = ψh,a(fh − r i
h), ‖ψh,a∇ui

h + di
h,a‖ → min .

The local flux di
h,a is given as the solution of

(di
h,a, vh)ωh,a − (γah, div vh)ωh,a = −(ψh,a∇ui

h, vh)ωh,a

(div di
h,a, qh)ωh,a = (f ψh,a −∇ui

h · ∇ψh,a − r i
hψh,a, qh)ωh,a .

di
h,a, vh elementwise RTNq functions from H(div,Ω) with no flux through ∂ωh,a

γah, qh elementwise q-order polynomials, discontinuous, with zero mean on ωh,a

Thanks to the compatibility condition

(f ψh,a −∇ui
h · ∇ψh,a − rhψh,a, 1)ωh,a = 0,

we have div di
h = fh − r i

h.

20/37

Quasi-equilibrated flux

Goal: construct di
h ∈ H(div,Ω), di

h|K ∈ RTNq(K), div di
h = fh − r i

h.

Local construction based on a partition of unity by piecewise affine hat functions corresponding
to each vertex of the mesh,

di
h :=

∑
a∈Vh

di
h,a div di

h,a = ψh,a(fh − r i
h), ‖ψh,a∇ui

h + di
h,a‖ → min .

The local flux di
h,a is given as the solution of

(di
h,a, vh)ωh,a − (γah, div vh)ωh,a = −(ψh,a∇ui

h, vh)ωh,a

(div di
h,a, qh)ωh,a = (f ψh,a −∇ui

h · ∇ψh,a − r i
hψh,a, qh)ωh,a .

Thanks to the compatibility condition

(f ψh,a −∇ui
h · ∇ψh,a − rhψh,a, 1)ωh,a = 0,

we have div di
h = fh − r i

h.
20/37

Algebraic flux

Goal: construct ai
h ∈ H(div,Ω), ai

h|K ∈ RTNq(K), div ai
h = r i

h.

Can be generalized to construct a flux with an arbitrary (prescribed) divergence.

Crucial difficulty: as above for di
h !

Idea: use a solution on a coarser mesh → multilevel construction

Two-level construction
Step 1: Solve for piecewise affine scalar function on the coarser level

(∇ρ0,alg,∇v0) = (r i
h, v0) ∀v0 ∈ P1(TH).

Step 2: On the finer level

(ai
h,a, vh)ωH,a − (γah, div vh)ωH,a = 0

(div ai
h,a, qh)ωH,a = (r i

hψH,a −∇ρ0,alg · ∇ψH,a, qh)ωH,a .

Step 3: Define
ai

h :=
∑
a∈VH

ai
h,a.

21/37

Algebraic flux

Goal: construct ai
h ∈ H(div,Ω), ai

h|K ∈ RTNq(K), div ai
h = r i

h.

Crucial difficulty: there is no compatibility condition as above for di
h !

Idea: use a solution on a coarser mesh → multilevel construction

Two-level construction
Step 1: Solve for piecewise affine scalar function on the coarser level

(∇ρ0,alg,∇v0) = (r i
h, v0) ∀v0 ∈ P1(TH).

Step 2: On the finer level

(ai
h,a, vh)ωH,a − (γah, div vh)ωH,a = 0

(div ai
h,a, qh)ωH,a = (r i

hψH,a −∇ρ0,alg · ∇ψH,a, qh)ωH,a .

Step 3: Define
ai

h :=
∑
a∈VH

ai
h,a.

21/37

Algebraic flux

Goal: construct ai
h ∈ H(div,Ω), ai

h|K ∈ RTNq(K), div ai
h = r i

h.

Crucial difficulty: there is no compatibility condition as above for di
h !

Idea: use a solution on a coarser mesh → multilevel construction

Two-level construction
Step 1: Solve for piecewise affine scalar function on the coarser level

(∇ρ0,alg,∇v0) = (r i
h, v0) ∀v0 ∈ P1(TH).

Step 2: On the finer level

(ai
h,a, vh)ωH,a − (γah, div vh)ωH,a = 0

(div ai
h,a, qh)ωH,a = (r i

hψH,a −∇ρ0,alg · ∇ψH,a, qh)ωH,a .

Step 3: Define
ai

h :=
∑
a∈VH

ai
h,a.

21/37

Algebraic flux

Goal: construct ai
h ∈ H(div,Ω), ai

h|K ∈ RTNq(K), div ai
h = r i

h.

Crucial difficulty: there is no compatibility condition as above for di
h !

Idea: use a solution on a coarser mesh → multilevel construction

Two-level construction
Step 1: Solve for piecewise affine scalar function on the coarser level

(∇ρ0,alg,∇v0) = (r i
h, v0) ∀v0 ∈ P1(TH).

Step 2: On the finer level

(ai
h,a, vh)ωH,a − (γah, div vh)ωH,a = 0

(div ai
h,a, qh)ωH,a = (r i

hψH,a −∇ρ0,alg · ∇ψH,a, qh)ωH,a .

Step 3: Define
ai

h :=
∑
a∈VH

ai
h,a. 21/37

Algebraic flux – two-level construction

a ∈ VH

⇔

⇔
⇔ ⇔

⇔

⇔

⇔

⇔

⇔

⇔
⇔

⇔

⇔ ⇔

⇔

⇔
⇔

⇔

• • • •

• •

• •
• •

• •

• •

• •

• • • •

• •

• •

• •

• •

• •

• •

• •

• •

• •
• •

• •

• •

• •
• •

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

coarse patch ωH,a for a ∈ VH (full line)
fine mesh Th of ωH,a (dashed line)

degrees of freedom for ai
h,a for q = 1 (arrows and bullets) 22/37

Algebraic flux – multilevel construction

In multilevel setting, we have

ai
h :=

J∑
j=1

∑
a∈Vj−1

ai
j,a,

where ai
1,a are defined analogously to two-level setting and, for 1 < j ≤ J ,

(ai
j,a, vj)ωj−1,a − (γaj , div vj)ωj−1,a = 0

(div ai
j,a, qj)ωj−1,a = ((Id− Πq

j−1)(r i
hψH,a), qj)ωj−1,a .

23/37

Numerical results

Figure 1: L-shape problem, p = 3: elementwise distribution of the total energy error ‖∇(u − ui
h)‖K (left)

and of the local error indicators (right) after 28 PCG iterations. We plot in both figures the part
[−0.1, 0.1]× [−0.1, 0.1] of the discretization domain Ω

taken from [Papež, Rüde, Vohralík, Wohlmuth (2020)]
24/37

Numerical results

Figure 2: L-shape problem, p = 3: elementwise distribution of the algebraic energy error ‖∇(uh − ui
h)‖K

(left) and of the local error indicators (right) after 28 PCG iterations

25/37

Numerical results

PCG algebraic eff. index total eff. index discretization eff. index
p iter error UB LB error UB LB error UB LB
1 4 8.9×10−2 1.02 1.00−1 9.1×10−2 1.26 1.03−1 2.2×10−2 3.35 —

8 3.8×10−4 1.01 1.00−1 2.2×10−2 1.22 1.12−1 1.22 1.12−1

2 4 6.2×10−1 1.01 1.00−1 6.2×10−1 1.07 1.00−1 8.9×10−3 2.61×101 —
8 6.0×10−3 1.01 1.00−1 1.1×10−2 1.65 1.58−1 1.88 2.86−1

12 1.9×10−4 1.01 1.00−1 8.9×10−3 1.33 1.28−1 1.33 1.28−1

3 7 1.0 1.00 1.00−1 1.0 1.05 1.00−1 5.3×10−3 6.29×101 —
14 3.1×10−2 1.01 1.00−1 3.1×10−2 1.24 1.01−1 4.48 —
21 1.7×10−3 1.00 1.00−1 5.6×10−3 1.68 1.48−1 1.74 1.59−1

28 9.6×10−5 1.00 1.00−1 5.3×10−3 1.46 1.41−1 1.46 1.41−1

4 7 1.2 1.01 1.00−1 1.2 1.08 1.00−1 3.8×10−3 1.30×102 —
14 5.0×10−2 1.01 1.00−1 5.1×10−2 1.14 1.00−1 7.34 —
21 3.4×10−3 1.00 1.00−1 5.0×10−3 1.77 1.50−1 2.19 —
28 1.8×10−4 1.01 1.00−1 3.8×10−3 1.52 1.60−1 1.52 1.60−1

L-shape problem, PCG solver: effectivity of the error bounds

26/37

Numerical results

MG algebraic eff. index total eff. index discretization eff. index
p iter error UB LB error UB LB error UB LB
1 1 1.4 1.14 1.03−1 1.4 1.61 1.03−1 2.2×10−2 8.31×101 —

2 6.7×10−2 1.14 1.04−1 7.0×10−2 1.61 1.10−1 4.22 —
3 4.3×10−3 1.16 1.07−1 2.3×10−2 1.37 1.16−1 1.38 1.17−1

4 4.1×10−4 1.17 1.09−1 2.2×10−2 1.22 1.13−1 1.22 1.13−1

2 1 2.6 1.19 1.01−1 2.6 1.78 1.01−1 8.9×10−3 4.31×102 —
2 8.9×10−2 1.19 1.01−1 8.9×10−2 1.79 1.01−1 1.49×101 —
3 2.2×10−3 1.18 1.01−1 9.2×10−3 1.55 1.42−1 1.58 1.50−1

4 8.6×10−5 1.19 1.02−1 8.9×10−3 1.32 1.29−1 1.32 1.29−1

3 1 2.4 1.19 1.00−1 2.4 1.72 1.00−1 5.3×10−3 6.29×102 —
2 1.1×10−1 1.20 1.00−1 1.1×10−1 1.76 1.00−1 2.92×101 —
3 3.6×10−3 1.18 1.00−1 6.4×10−3 1.89 1.47−1 2.19 6.44−1

4 1.8×10−4 1.17 1.01−1 5.3×10−3 1.48 1.42−1 1.48 1.42−1

4 1 2.6 1.18 1.00−1 2.6 1.68 1.00−1 3.8×10−3 9.43×102 —
2 1.3×10−1 1.18 1.00−1 1.3×10−1 1.71 1.00−1 4.93×101 —
3 6.0×10−3 1.16 1.00−1 7.1×10−3 1.87 1.18−1 3.13 —
4 3.5×10−4 1.13 1.00−1 3.8×10−3 1.57 1.66−1 1.57 1.67−1

L-shape problem, multigrid V-cycle solver: effectivity of the error bounds 27/37

Algebraic flux – simplifications of multilevel construction

To reduce computational cost

• construct ai
j ∈ RTN1(Tj) for 1 ≤ j < J ,

• on each "large" patch, replace the RTN solve by one P1-solve and several RTN solves on
"small" patches

• as above but additionally replace RTN solves on "small" patches by a sweep over elements
of the patch

However, this does not yield the same flux! The estimate may be (bit) worse.

[Papež, Vohralík (2021?)]

28/37

Algebraic flux – original "large" patch RTN solve

a ∈ VH

⇔

⇔
⇔ ⇔

⇔

⇔

⇔

⇔

⇔

⇔
⇔

⇔

⇔ ⇔

⇔

⇔
⇔

⇔

• • • •

• •

• •
• •

• •

• •

• •

• • • •

• •

• •

• •

• •

• •

• •

• •

• •

• •
• •

• •

• •

• •
• •

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

⇔

coarse patch ωH,a for a ∈ VH (full line)
fine mesh Th of ωH,a (dashed line)

degrees of freedom for ai
h,a for q = 1 (arrows and bullets) 29/37

Algebraic flux – simplification 2

•
•

•

•

•

•

a ∈ V int
j−1

a′ ∈ Va
j

ωa
j−1ωa,a′ • •

•

•
•

• • • •

•

•

• •

ωa,a′

⇔

⇔
⇔

⇔

⇔

⇔

• •

• •

• •

• •

• •

• •a′

•

ωa,a′′

a′′ ∈ Va
j

⇔• •

• •

a′′•

ωa,a′′

degrees of freedom for the H1 Neumann solve
(bullets)

degrees of freedom of local fluxes on small
patches

30/37

Algebraic flux – simplification 3

•
•

•

•

•

•

a ∈ V int
j−1

a′ ∈ Va
j

ωa
j−1ωa,a′ • •

•

•
•

• • • •

•

•

• •

ωa,a′

K1
K2

K3

. . .

⇔⇔
K1

• •

a′
•

K2

⇔

• •

a′
•

a′

•

ωa,a′′

a′′ ∈ Va
j

K1

K2

a′′•

ωa,a′′

⇔

• •
K1

a′′•

degrees of freedom for the H1 Neumann solve
(bullets)

explicit run
through

small patch

degrees of freedom of
local fluxes on single

elements
31/37

Numerical results - simplifications, effectivity

PCG algebraic eff. index total eff. index
p iter error orig. simpl.1 simpl.2 error orig. simpl.1 simpl.2
1 (2.5×104) 4 8.9×10−2 1.02 1.05 1.18 9.1×10−2 1.26 1.29 1.42

8 3.8×10−4 1.01 1.03 1.17 2.2×10−2 1.22 1.22 1.22
2 (1.0×105) 4 6.2×10−1 1.01 1.03 1.18 6.2×10−1 1.07 1.09 1.24

8 6.0×10−3 1.01 1.04 1.19 1.1×10−2 1.65 1.67 1.75
12 1.9×10−4 1.01 1.03 1.18 8.9×10−3 1.33 1.33 1.33

3 (2.3×105) 7 1.0 1.00 1.03 1.17 1.0 1.05 1.07 1.22
14 3.1×10−2 1.01 1.04 1.19 3.1×10−2 1.24 1.27 1.42
21 1.7×10−3 1.00 1.03 1.15 5.6×10−3 1.68 1.69 1.72
28 9.6×10−5 1.00 1.03 1.18 5.3×10−3 1.46 1.46 1.46

4 (4.0×105) 7 1.2 1.01 1.02 1.17 1.2 1.08 1.10 1.25
14 5.0×10−2 1.01 1.04 1.18 5.1×10−2 1.14 1.17 1.31
21 3.4×10−3 1.00 1.03 1.16 5.0×10−3 1.77 1.78 1.87
28 1.8×10−4 1.01 1.04 1.18 3.8×10−3 1.52 1.52 1.53

L-shape problem, PCG solver: effectivity of the error bounds with original and two cheaper
constructions

32/37

Numerical results - simplifications, effectivity
MG algebraic eff. index total eff. index

p iter error orig. simpl.1 simpl.2 error orig. simpl.1 simpl.2
1 (2.5×104) 1 1.4 1.14 1.18 1.37 1.4 1.60 1.64 1.83

2 6.7×10−2 1.14 1.19 1.38 7.0×10−2 1.61 1.65 1.84
3 4.3×10−3 1.16 1.25 1.59 2.3×10−2 1.37 1.39 1.45
4 4.1×10−4 1.17 1.31 1.76 2.2×10−2 1.22 1.22 1.23

2 (1.0×105) 1 2.6 1.19 1.22 1.74 2.6 1.78 1.81 2.33
2 8.9×10−2 1.19 1.20 1.64 8.9×10−2 1.79 1.80 2.24
3 2.2×10−3 1.18 1.21 1.64 9.2×10−3 1.55 1.56 1.66
4 8.6×10−5 1.19 1.25 1.70 8.9×10−3 1.32 1.32 1.32

3 (2.3×105) 1 2.4 1.19 1.20 1.59 2.4 1.72 1.74 2.12
2 1.1×10−1 1.20 1.19 1.59 1.1×10−1 1.76 1.76 2.16
3 3.6×10−3 1.18 1.17 1.61 6.4×10−3 1.89 1.88 2.13
4 1.8×10−4 1.17 1.16 1.66 5.3×10−3 1.48 1.48 1.49

4 (4.0×105) 1 2.6 1.18 1.25 1.61 2.6 1.68 1.75 2.11
2 1.3×10−1 1.18 1.18 1.50 1.3×10−1 1.71 1.72 2.03
3 6.0×10−3 1.16 1.15 1.46 7.1×10−3 1.87 1.87 2.12
4 3.5×10−4 1.13 1.13 1.44 3.8×10−3 1.57 1.57 1.60

L-shape problem, multigrid V-cycle solver: effectivity of the error bounds with original and two
cheaper constructions 33/37

Numerical results - simplifications, timing

5.2 5.3 5.4 5.9
14.8 16.4 19.2 23.316.1 23.1

32.1

53.153.0

71.5

139.9

231.6

1 2 3 4

polynomial degree

0

50

100

150

200

ti
m

e
orig.

simpl. 1

simpl. 2

(RTN0 bound)

Timing of constructions for varying polynomial degree 34/37

Conclusion

For error estimators based on flux reconstructions

Positives

• Upper bounds on the errors without any unknown constants
• We can prove the efficiency of the estimators (global+local for total error estimators; global

for algebraic error estimators)
• Easily parallelizable construction
• Technique can be applied to more problems

Drawbacks

• Very high computational cost
• Requires implementation of p-order RTN functions
• Mesh hierarchy is required

35/37

References

J. Papež, Z. Strakoš, and M. Vohralík.
Estimating and localizing the algebraic and total numerical errors using flux
reconstructions.
Numer. Math., 138(3):681–721, Mar 2018.

J. Papež, U. Rüde, M. Vohralík, and B. Wohlmuth.
Sharp algebraic and total a posteriori error bounds for h and p finite elements via a
multilevel approach: Recovering mass balance in any situation.
Computer Methods in Applied Mechanics and Engineering, 371:113243, 2020.

J. Papež and M. Vohralík.
Inexpensive guaranteed and efficient upper bounds on the algebraic error in finite
element discretizations.
December 2019, in revision.

36/37

Thank you for your attention!
papez@math.cas.cz

37/37

	JanPapez-SNA21_part1
	Introduction, notation, and motivation
	How algebraic error can look like
	Algebraic error and residual-based error estimator
	Preconditioning as transformation of the discretization basis
	Backward interpretation of the algebraic error
	Re-use of error estimators
	Conclusion

	JanPapez-SNA21_part2
	Introduction and notation
	Upper bound on total error and quasi-equilibrated flux reconstruction
	Three algebraic error upper bounds
	Construction of fluxes
	Numerical results
	Conclusion

