

A Poroelastoplastic Model for Saturated Clays Incorporating the Modified Cam-Clay Model

Tomáš Ligurský 12 October, 2022

Institute of Geonics of the Czech Academy of Sciences

Setting of the model

Balance Laws

Constitutive Relationships

Thermodynamical Consistency

Field equations

Setting of the model

- Non-stationary isothermal saturated water flow in a deformable clay.
- The clay is composed of an *incompressible* solid matrix (index *s*) and a porous space completely filled by water (index *w*).
- The poroelastoplastic modified Cam-Clay model with non-linear elasticity is used for the solid skeleton.
- Negligible inertial effects.
- Lagrangian formulation.
- The small-strain assumption.
- Compressive-positive pressures, tensile-positive stresses.
- Based on [Cou04].

Balance Laws

Under the small-strain assumption:

$$\begin{array}{l} \frac{\partial(\phi\rho_w)}{\partial t} + \operatorname{div}(\rho_w \boldsymbol{q}_{rw}) = 0 \\ t - \text{ the time } \rho_w - \text{ the water mass density} \\ \phi - \text{ the Lagrangian porosity (with respect to the initial configuration)} \\ \boldsymbol{q}_{rw} \equiv n(\boldsymbol{v}_w - \boldsymbol{v}_s) - \text{ the Darcy velocity} \\ n - \text{ the Eulerian porosity (with respect to the deformed configuration)} \\ \boldsymbol{v}_w - \text{ the water velocity} \quad \boldsymbol{v}_s - \text{ the skeleton velocity} \end{array}$$

Under the small-strain assumption:

$$\begin{aligned} \operatorname{div} \boldsymbol{\sigma} &+ ((1 - \phi_0)\rho_s^0 + \phi \rho_w) \boldsymbol{f} = \boldsymbol{0} \\ \boldsymbol{\sigma} &- \text{ the Cauchy stress tensor } \phi_0 &- \text{ an initial Lagrangian porosity} \\ \rho_s^0 &- \text{ the initial matrix mass density } \boldsymbol{f} - \text{ a body force density} \end{aligned}$$

Constitutive Relationships

By considering the water to be compressible:

$$\frac{d\rho_w}{\rho_w} = \frac{dp_w}{K_w}$$

$$d - \text{the differential operator with respect to time}$$

$$p_w - \text{the water pressure} \quad K_w - \text{the water bulk modulus}$$

By considering the water to be compressible:

$$\begin{array}{l} \displaystyle \frac{d\rho_w}{\rho_w} = \frac{dp_w}{K_w} \\ \\ \displaystyle d - \mbox{ the differential operator with respect to time} \\ \\ \displaystyle p_w - \mbox{ the water pressure} \qquad K_w - \mbox{ the water bulk modulus} \end{array}$$

Assuming K_w constant (over some range of pressures), one obtains by integration:

$$\begin{split} \rho_w &= \rho_w^0 e^{(\rho_w - \rho_w^0)/K_w} \\ \rho_w^0, \rho_w^0 & - \text{ initial values of the water density and pressure} \end{split}$$

Tomáš Ligurský

Transport of water is described by:

$$\begin{aligned} \boldsymbol{q}_{rw} &= \frac{\boldsymbol{k}}{\mu_w} (-\nabla \rho_w + \rho_w \boldsymbol{f}) \\ \boldsymbol{k} &- \text{the (intrinsic) permeability tensor of the porous medium} \\ \mu_w &- \text{the dynamic viscosity of water} \end{aligned}$$

Porosity

The solid grains forming the matrix generally undergo negligible volume changes and the matrix can be assumed to be *incompressible*. This means that the matrix volume remains unchanged during the deformation:

$$(1-n) \,\mathrm{d} V_t = (1-n_0) \,\mathrm{d} V_0$$

 n_0 — the initial Eulerian porosity

 $\mathrm{d}\,V_0$ — an arbitrary infinitesimal volume in the initial configuration

 $\mathrm{d}V_t$ — the corresponding infinitesimal volume in the deformed configuration

Porosity

The solid grains forming the matrix generally undergo negligible volume changes and the matrix can be assumed to be *incompressible*. This means that the matrix volume remains unchanged during the deformation:

$$(1-n) \,\mathrm{d} V_t = (1-n_0) \,\mathrm{d} V_0$$

 n_0 — the initial Eulerian porosity

 ${\rm d}\,V_0$ — an arbitrary infinitesimal volume in the initial configuration

 $\mathrm{d}V_t$ — the corresponding infinitesimal volume in the deformed configuration

Use of transport formulae gives in the framework of small strains:

$$\begin{split} \phi &= \phi_0 + \varepsilon_v \\ \varepsilon_v &\equiv \operatorname{tr} \boldsymbol{\varepsilon} - \text{the volumetric strain} \\ \boldsymbol{\varepsilon} &\equiv \frac{1}{2} (\boldsymbol{\nabla} \boldsymbol{u} + (\boldsymbol{\nabla} \boldsymbol{u})^\top) - \text{the linear strain tensor} \\ \boldsymbol{u} - \text{the displacement vector of the skeleton} \end{split}$$

Poroplasticity is the ability of porous materials to undergo permanent strains. In the context of small strains, the strain tensor ε can be decomposed into a reversible part (elastic, superscript *el*) and an irreversible one (plastic, superscript *p*) as follows:

$$oldsymbol{arepsilon} = oldsymbol{arepsilon}^{el} + oldsymbol{arepsilon}^{p}$$

Our constitutive stress:

 $\sigma' \equiv \sigma + p_w I$ — Terzaghi's effective stress

Our constitutive stress:

$$oldsymbol{\sigma}'\equivoldsymbol{\sigma}+
ho_woldsymbol{l}$$
 — Terzaghi's effective stress

We introduce the decompositions:

$$\sigma' = \mathbf{s} - p'\mathbf{I}$$

$$p' \equiv -\frac{1}{3}\operatorname{tr} \sigma' - \text{the effective pressure} \qquad \mathbf{s} - \text{the deviatoric stress tensor}$$

$$\varepsilon = \varepsilon_d + \frac{1}{3}\varepsilon_v \mathbf{I}$$

$$\varepsilon_d - \text{the deviatoric strain tensor}$$

When the porous material is subjected to an axial pressure $-\sigma_1$ in one direction and a uniform pressure $-\sigma_2 = -\sigma_3$ in the orthogonal directions, and the material is *isotropic*, it suffices to consider:

$$q \equiv -(\sigma_1 - \sigma_3)$$
 — the deviatoric stress
 $\epsilon_q \equiv -\frac{2}{3}(\varepsilon_1 - \varepsilon_3)$ — the deviatoric strain
 $\varepsilon_1, \varepsilon_3 (= \varepsilon_2)$ — principal strains

and we shall take

$$\epsilon_v := -\varepsilon_v$$

Non-linear poroelasticity

The following elastic behaviour of clays has been experimentally found:

$$\begin{aligned} d\epsilon_v^{el} &= \kappa^* \frac{dp'}{p'} \qquad d\epsilon_q^{el} = \frac{dq}{3\mu} \\ \kappa^* &:= \frac{\kappa}{1+e_0} \qquad e_0 = \frac{\phi_0}{1-\phi_0} - \text{ an initial void ratio} \\ \kappa &- \text{ an elastic stiffness parameter } \mu - \text{ the shear modulus} \\ \left(K(p') &:= \frac{p'}{\kappa^*} - \text{ the tangent bulk modulus} \right) \end{aligned}$$

Non-linear poroelasticity

The following elastic behaviour of clays has been experimentally found:

$$\begin{aligned} d\epsilon_v^{el} &= \kappa^* \frac{dp'}{p'} \qquad d\epsilon_q^{el} = \frac{dq}{3\mu} \\ \kappa^* &:= \frac{\kappa}{1+e_0} \qquad e_0 = \frac{\phi_0}{1-\phi_0} - \text{ an initial void ratio} \\ \kappa &- \text{ an elastic stiffness parameter } \mu - \text{ the shear modulus} \\ \left(\mathcal{K}(p') &:= \frac{p'}{\kappa^*} - \text{ the tangent bulk modulus} \right) \end{aligned}$$

By integration:

$$\begin{split} \epsilon_v^{el} &= \kappa^* \ln \frac{p'}{p'_0} \qquad \epsilon_q^{el} = \frac{q - q_0}{3\mu} \\ p'_0, q_0 &- \text{initial values of } p'_0 \text{ and } q \end{split}$$

and by inversion:

$$p' = p'_0 \exp\left(\frac{\epsilon_v^{el}}{\kappa^*}\right) \qquad q = 3\mu\epsilon_q^{el} + q_0$$

Tomáš Ligurský

Loading function

$$f(p', q, p_{co}) = \left(p' - \frac{p_{co}}{2}\right)^2 + \frac{q^2}{M^2} - \left(\frac{p_{co}}{2}\right)^2$$
$$p_{co} - \text{the effective consolidation pressure}$$
$$M - \text{a material parameter}$$

Figure 1: Yield surface f = 0.

Flow rule

$$d\epsilon_{v}^{p} = d\lambda \frac{\partial f}{\partial p'} = 2d\lambda \left(p' - \frac{p_{co}}{2}\right) \qquad d\epsilon_{q}^{p} = d\lambda \frac{\partial f}{\partial q} = 2d\lambda \frac{q}{M^{2}}$$

where the plastic multiplier $d\lambda$ satisfies the complementarity conditions:

$$d\lambda \ge 0$$
 $f \le 0$ $d\lambda \cdot f = 0$

Flow rule

$$d\epsilon_{v}^{p} = d\lambda \frac{\partial f}{\partial p'} = 2d\lambda \left(p' - \frac{p_{co}}{2}\right) \qquad d\epsilon_{q}^{p} = d\lambda \frac{\partial f}{\partial q} = 2d\lambda \frac{q}{M^{2}}$$

where the plastic multiplier $d\lambda$ satisfies the complementarity conditions:

$$d\lambda \ge 0$$
 $f \le 0$ $d\lambda \cdot f = 0$

Figure 2: Yield surface.

Hardening

The incremental law:

$$\frac{dp_{co}}{p_{co}} = \frac{1}{\lambda^* - \kappa^*} d\epsilon^p_v \qquad \lambda^* := \frac{\lambda}{1 + e_0} \qquad \kappa < \lambda - \text{a parameter}$$

Figure 3: Yield surface.

Tomáš Ligurský

Hardening

The incremental law:

$$\frac{d p_{co}}{p_{co}} = \frac{1}{\lambda^* - \kappa^*} d \epsilon^p_v \qquad \lambda^* := \frac{\lambda}{1 + e_0} \qquad \kappa < \lambda - \text{a parameter}$$

By integration:

Figure 3: Yield surface.

Tomáš Ligurský

Parameters		Initial (reference) values	
Water bulk modulus	K _w	Water pressure	p_w^0
Permeability (tensor)	k	Water density	ρ_w^0
Dynamic viscosity of water	μ_w	Porosity (or void ratio)	$\phi_0(e_0)$
Elastic stiffness parameter	κ	Matrix density	ρ_s^0
Shear modulus	μ	Consolidation pressure	p_{co}^0
Shear strength	М	(Displacement	$\boldsymbol{u}_0=\boldsymbol{0})$
Plastic stiffness parameter	λ		

Thermodynamical Consistency

In the context of small isothermal strains, the non-negativeness of the dissipation associated with the skeleton saturated by water can be written as the following Clausius–Duhem inequality:

$$\boldsymbol{\sigma}: d\boldsymbol{\varepsilon} + p_w d\phi - d\Psi_s \geq 0$$

 Ψ_s — the Helmholtz free energy of the skeleton

skeleton

In the context of small isothermal strains, the non-negativeness of the dissipation associated with the skeleton saturated by water can be written as the following Clausius–Duhem inequality:

$$\sigma: d\varepsilon + p_w d\phi - d\Psi_s \ge 0$$

 Ψ_c — the Helmholtz free energy of the

By the incompressibility condition $d\phi = d\varepsilon_v$:

$$\sigma': dm{arepsilon} - d\Psi_s \geq 0$$

In the context of small isothermal strains, the non-negativeness of the dissipation associated with the skeleton saturated by water can be written as the following Clausius–Duhem inequality:

$$oldsymbol{\sigma}: doldsymbol{arepsilon}+p_w d\phi-d\Psi_s\geq 0$$

 Ψ_s — the Helmholtz free energy of the skeleton

By the incompressibility condition $d\phi = d\varepsilon_v$:

$$\pmb{\sigma}':d\pmb{arepsilon}-d\Psi_s\geq 0$$

and for an isotropic material under triaxial stress conditions:

$$p'd\epsilon_v + qd\epsilon_q - d\Psi_s \ge 0$$

Tomáš Ligurský

Owing to the additive character of energy, the energy Ψ_s can be split into two parts:

(i) the elastic energy F stored in the skeleton during reversible mechanical processes;

(ii) the locked energy Z that is stored in the skeleton when irreversible (mechanical) processes take place:

$$\begin{split} \Psi_{s} &= F(\epsilon_{v}^{el}, \epsilon_{q}^{el}) + Z(\chi) \\ \chi & \longrightarrow \text{ a hardening state variable} \end{split}$$

Inserting the energy decomposition into the dissipation condition, one gets:

$$\begin{pmatrix} p' - \frac{\partial F}{\partial \epsilon_v^{el}} \end{pmatrix} d\epsilon_v^{el} + \left(q - \frac{\partial F}{\partial \epsilon_q^{el}} \right) d\epsilon_q^{el} + p' d\epsilon_v^p + q d\epsilon_q^p + \zeta d\chi \ge 0$$

$$\zeta \equiv -\frac{\mathrm{d}Z}{\mathrm{d}\chi} - \text{the hardening force}$$

Inserting the energy decomposition into the dissipation condition, one gets:

$$\begin{pmatrix} p' - \frac{\partial F}{\partial \epsilon_v^{el}} \end{pmatrix} d\epsilon_v^{el} + \left(q - \frac{\partial F}{\partial \epsilon_q^{el}} \right) d\epsilon_q^{el} + p' d\epsilon_v^p + q d\epsilon_q^p + \zeta d\chi \ge 0$$

$$\zeta \equiv -\frac{\mathrm{d}Z}{\mathrm{d}\chi} - \text{the hardening force}$$

From here:

$$p' = \frac{\partial F}{\partial \epsilon_v^{el}} \qquad q = \frac{\partial F}{\partial \epsilon_q^{el}}$$
$$p' d\epsilon_v^p + q d\epsilon_q^p + \zeta d\chi \ge 0$$

Alternatively, by introducing the energy G by the following Legendre transformation:

$$G(p',q) = p'\epsilon_v^{el} + q\epsilon_q^{el} - F(\epsilon_v^{el},\epsilon_q^{el})$$

Alternatively, by introducing the energy G by the following Legendre transformation:

$$G(p',q) = p'\epsilon_v^{el} + q\epsilon_q^{el} - F(\epsilon_v^{el},\epsilon_q^{el})$$

one obtains the state equations:

$$\epsilon_{v}^{el} = \frac{\partial G}{\partial p'} \qquad \epsilon_{q}^{el} = \frac{\partial G}{\partial q}$$

The energy potential G:

$$G(p',q) = \kappa^* p' \left(\ln rac{p'}{p_0'} - 1
ight) + rac{(q-q_0)^2}{6\mu}$$

The energy potential F:

$$F(\epsilon_v^{el}, \epsilon_q^{el}) = \kappa^* p_0' \exp\left(\frac{\epsilon_v^{el}}{\kappa^*}\right) + \frac{3}{2}\mu(\epsilon_q^{el})^2 + \epsilon_q^{el} q_0$$

Tomáš Ligurský

We identify:

 $\chi = \epsilon_v^p$ — the hardening variable $\zeta = -p_{co}$ — the hardening force and we require:

$$p_{co} = \frac{\mathrm{d}Z}{\mathrm{d}\epsilon_{v}^{p}}$$

This is satisfied by taking:

$$Z(\epsilon_v^p) = (\lambda^* - \kappa^*) p_{co}^0 \exp\left(\frac{\epsilon_v^p}{\lambda^* - \kappa^*}\right)$$

Tomáš Ligurský

It suffices to verify:

$$p'd\epsilon_v^p + qd\epsilon_q^p - p_{co}d\epsilon_v^p \ge 0$$

or by inserting the flow rule:

$$d\lambda \left[2p' \left(p' - \frac{p_{co}}{2} \right) + 2\frac{q^2}{M^2} - 2p_{co} \left(p' - \frac{p_{co}}{2} \right) \right] \ge 0$$

It suffices to verify:

$$p'd\epsilon_v^p + qd\epsilon_q^p - p_{co}d\epsilon_v^p \ge 0$$

or by inserting the flow rule:

$$d\lambda \left[2p'\left(p'-\frac{p_{co}}{2}\right)+2\frac{q^2}{M^2}-2p_{co}\left(p'-\frac{p_{co}}{2}\right) \right] \geq 0$$

In virtue of the complementarity conditions either $d\lambda = 0$ or $(d\lambda > 0$ and f = 0). In the latter case, one arrives at:

$$2p'\left(p'-\frac{p_{co}}{2}\right)+2\frac{q^2}{M^2}-2p_{co}\left(p'-\frac{p_{co}}{2}\right)=p_{co}(p_{co}-p')$$

Therefore one can conclude that the dissipated energy is non-negative over the whole range of admissible effective pressures p' ($p' \leq p_{co}$).

Tomáš Ligurský

Extension to general stress states

One can express the deviatoric strain ϵ_q and the deviatoric stress q from triaxial stress conditions as functions of the deviatoric tensors ε_d and s:

$$\epsilon_q^2 = \frac{2}{3} \varepsilon_d : \varepsilon_d \qquad \epsilon_q q = \varepsilon_d : \mathbf{s} \qquad q^2 = \frac{3}{2} \mathbf{s} : \mathbf{s}$$

This leads to:

$$F(\epsilon_v^{el}, \boldsymbol{\varepsilon}_d^{el}) = \kappa^* p_0' \exp\left(\frac{\epsilon_v^{el}}{\kappa^*}\right) + \mu \boldsymbol{\varepsilon}_d^{el} : \boldsymbol{\varepsilon}_d^{el} + \boldsymbol{\varepsilon}_d^{el} : \boldsymbol{s}_0$$
$$f(p', \boldsymbol{s}, p_{co}) = \left(p' - \frac{p_{co}}{2}\right)^2 + \frac{2}{3M^2} \boldsymbol{s} : \boldsymbol{s} - \left(\frac{p_{co}}{2}\right)^2$$

and

$$\mathbf{s} = \frac{\partial F}{\partial \varepsilon_d^{el}} = 2\mu \varepsilon_d^{el} + \mathbf{s}_0$$
$$d\varepsilon_d^p = d\lambda \frac{\partial f}{\partial \mathbf{s}} = \frac{d\lambda}{3M^2} \mathbf{s}$$

Tomáš Ligurský

Field equations

One obtains:

$$\frac{\partial(\phi\rho_{w})}{\partial t} = \rho_{w}\frac{\partial\phi}{\partial t} + \phi\frac{\partial\rho_{w}}{\partial t} = \rho_{w}\frac{\partial\varepsilon_{v}}{\partial t} + \frac{\phi\rho_{w}}{K_{w}}\frac{\partial\rho_{w}}{\partial t}$$
$$\operatorname{div}(\rho_{w}\boldsymbol{q}_{rw}) = \operatorname{div}\left(\rho_{w}\frac{\boldsymbol{k}}{\mu_{w}}(-\nabla\rho_{w}+\rho_{w}\boldsymbol{f})\right)$$

and the water mass balance equation provides:

$$\rho_{w}\frac{\partial\varepsilon_{v}}{\partial t}+\frac{\phi\rho_{w}}{K_{w}}\frac{\partial p_{w}}{\partial t}=-\operatorname{div}\left(\rho_{w}\frac{\boldsymbol{k}}{\mu_{w}}(-\nabla p_{w}+\rho_{w}\boldsymbol{f})\right)$$

Tomáš Ligurský

By taking:

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}' - p_w \boldsymbol{l} = \boldsymbol{s} - p' \boldsymbol{l} - p_w \boldsymbol{l}$$

and invoking the stress-strain relationship, one obtains:

$$-\frac{\partial p'}{\partial \varepsilon_v^{el}} \nabla \varepsilon_v^{el} + 2\mu \operatorname{div} \varepsilon_d^{el} - \nabla p_w + ((1 - \phi_0)\rho_s^0 + \phi \rho_w) \boldsymbol{f} = \boldsymbol{0}$$

0. Coussy.

Poromechanics.

John Wiley & Sons, 2004. https://doi.org/10.1002/0470092718.