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115 67 Prague 1, Czech Republic

cCentre of Applied Mathematics, University of West Bohemia, Univerzitńı 8,
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Abstract

In geomechanics there are problems whose investigations lead to solving model prob-
lems based on variational formulations. Such problems are frequently formulated by
variational inequalities as they physically describe the principle of virtual work in its
inequality form. In the first part of the contribution the algorithm for the numer-
ical solution of the discussed variational inequality problem will be investigated.
The used parallel algorithm is based on a nonoverlapping domain decomposition
method for unilateral contact problem with the given friction and the finite element
approach. The conditions of solvability will be presented. In the second part of the
contribution a unilateral contact problem with friction and with uncertain input
data in quasi-coupled thermo-elasticity is analysed. Method of worst scenario will
be applied to find the most “dangerous” admissible input data. The solvability of the
corresponding worst scenario (antioptimization) problem will be shortly discussed.
Numerical experiments, e.g. a tunnel crossing by an active fault will be presented.

Key words: unilateral contact, steady-state heat flow, Coulomb friction, finite
element analysis, nonoverlapping domain, decomposition method, uncertain data,
worst scenario, reliable solution, geomechanics, radioactive waste repositories,
geodynamics

1 Introduction

In this paper we will deal with semi-coercive contact problem with friction
and uncertain input data in linear quasi-coupled thermo-elasticity. The prob-
lem represents extension of problems solved in Nedoma (1987), (1998) for
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their application in geomechanics of high level radioactive waste repositories.
Such problems are frequently formulated by variational inequalities as they
physically describe the principle of virtual work in its inequality form.

The first part of the contribution will deal with numerical solution of a geome-
chanical problem based on the generalized semi-coercive contact problem with
the given friction in quasi-coupled thermo-elasticity for the case that “s” bod-
ies of arbitrary shapes are in mutual contacts and are loaded by external forces.
The problem will be formulated as the primary variational inequality problem.
The corresponding algorithm, employing properties of modern parallel com-
puters with greater number of processors, will be based on nonoverlapping
domain decomposition method.

In the second part of the contribution we will assume that the input data will
be also uncertain. By uncertain data we mean input data (physical coefficients,
right-hand sides, boundary values, friction, etc.), which cannot be determined
uniquely but only in some intervals determined by their measurement errors.
The notation reliable solution denotes the worst case among a set of possi-
ble solutions, where possibility is given by uncertain input data, and the degree
of badness is measured by a criterion-functional (Hlaváček (1999), Hlaváček,
Nedoma (2002)). The main goal of our investigation will be to find maximal
values of this functional depending on the solution of the problem to be solved.
Therefore, we will formulate and analyze a corresponding maximization (worst
scenario) problem.

2 Formulation of the thermo-elastic contact problem

Let us consider a union Ω of bounded domains Ωι, ι = 1, ..., s, with Lipschitz
boundaries ∂Ωι, occupied by elastic bodies such that Ω = ∪s

ι=1Ω
ι ⊂ IRN , N ∈

{2, 3}. Let the boundary ∂Ω = ∪s
ι=1∂Ωι consist of three disjoint parts Γτ , Γu

and Γc, such that ∂Ω = Γτ ∪ Γu ∪ Γc.

Assume that (N − 1)−dimensional measures of Γτ , Γu and Γc are positive,
where Γc = ∪k,lΓ

kl, Γkl = ∂Ωk ∩ ∂Ωl, 1 ≤ k, l ≤ s, k 6= l, and Γτ , Γu, Γc denote
the closures in ∂Ω.

We will deal with the following quasi-coupled problem of thermo-elasticity,
which consists of a pair of boundary value and contact problems to be solved
gradually.
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2.1 Problem of stationary heat conduction - problem P1

Let W ι and T1 be given functions. Problem P1 is to find a function of tem-
perature T = (T 1, . . . , T s) such that

∂

∂xi

(κι
ij

∂T ι

∂xj

) + W ι = 0 in Ωι, 1 ≤ ι ≤ s, i, j = 1, .., N, (2.1)

κij
∂T

∂xj

ni = 0 on Γu, (2.2)

T = T1, on Γτ , (2.3)

T k = T l, (κij
∂T

∂xj

ni)
k + (κij

∂T

∂xj

ni)
l = 0 on ∪k,l Γkl, 1 ≤ k, l ≤ s. (2.4)

Throughout the paper we use the summation convention, i.e. a repeated index
implies summation from 1 to N. Furthermore, nk = (nk

i ), i = 1, .., N, 1 ≤
k ≤ s, denotes the unit normal with respect to ∂Ωk,nk = −nl on Γkl; (κι

ij)
is the matrix of thermal conductivities. Assume that κι are positive definite
symmetric matrices,

0 < κι
0 ≤ κι

ijζiζj|ζ|−2 ≤ κι
1 < +∞ for a.a. x ∈ Ωι, ζ ∈ IRN ,

where κι
0, κ

ι
1 are constants independent of x ∈ Ωι. Let κι

ij ∈ L∞(Ωι), W ι ∈
L2(Ωι), T1 ∈ H1(Ωι), T k

1 = T l
1 on ∪k,lΓ

kl.

Definition 2.1 We say that a function T is a weak solution of problem P1, if
T − T1 ∈ V1 and

b(T, z) = s(z) ∀z ∈ V1, (2.5)

where

b(T, z) =
s∑

ι=1

∫

Ωι

κι
ij

∂T ι

∂xi

∂zι

∂xj

dx,

s(z) =
s∑

ι=1

∫

Ωι

W ιzι dx,

V1 = {z ∈ W1 = us
ι=1H

1(Ωι)|z = 0 on Γτ , z
k = zl on ∪k,l Γkl}.

The formulation (2.5) can be obtained by multiplying equation (2.1) by a test
function, integrating by parts over the domain Ωι and using the boundary
conditions.
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2.2 Problem of unilateral contact problem with friction - problem P2

Let the body forces F, the surface tractions P, boundary displacements u0,
elastic coefficients cι

ijkl, coefficients of thermal expansion βι
ij and slip limits

gkl
c , the temperature T ι and the reference temperature T ι

0 = T ι
0(x) be given.

We will deal with the following problem:

Problem P2: Find the displacement field u = (ui),i = 1, .., N in Ω, such that

∂

∂xj

τij(u
ι, T ι) + F ι

i = 0 in Ωι, 1 ≤ ι ≤ s, i = 1, ..., N, (2.6)

τij(u
ι, T ι) = cι

ijklekl(u
ι)− βι

ij(T
ι − T ι

0) in Ωι, 1 ≤ ι ≤ s, i = 1, ..., N, (2.7)

u = u0 on Γu, (2.8)

τij(u, T )nj = Pi on Γτ , i = 1, ..., N, (2.9)

uk
n − ul

n ≤ 0, τ k
n ≤ 0, (uk

n − ul
n)τ k

n = 0 on ∪k,l Γkl, 1 ≤ k, l ≤ s, (2.10)

|τ kl
t | ≤ gkl on ∪k,l Γkl, 1 ≤ k, l ≤ s, (2.11)

|τ kl
t | < gkl =⇒ uk

t − ul
t = 0, (2.12)

|τ kl
t | = gkl =⇒ there exists ϑ ≥ 0 such that uk

t − ul
t = −ϑτ kl

t . (2.13)

Here eij(u) = 1
2
( ∂ui

∂xj
+ ∂uj

∂xi
), uk

n = uk
i n

k
i , ul

n = ul
in

k
i (no sum over k or l), uk

t =

(uk
ti), uk

ti = uk
i − uk

nn
k
i , ul

t = (ul
ti), ul

ti = ul
i − ul

nn
l
i, i = 1, ..., N, τ k

n = τ k
ijn

k
i n

k
j ,

τ k
t = (τ k

ti), τ k
ti = τ k

ijn
k
j − τ k

nnk
i , τ l

n = τ l
ijn

l
in

l
j, τ l

t = (τ l
ti), τ l

ti = τ l
ijn

l
j − τ l

nn
l
i,

τ kl
t ≡ τ k

t .

Assume that cι
ijkl are positive definite symmetric matrices such that

0 < cι
0 ≤ cι

ijklξijξkl|ξ|−2 ≤ cι
1 < +∞ for a.a. x ∈ Ωι, ξ ∈ IRN2

, ξji = ξij,

where cι
0, c

ι
1 are constants independent of x ∈ Ωι. Let cι

ijkl ∈ L∞(Ωι), F ι
i ∈

L2(Ωι), Pi ∈ L2(Γτ ), βι
ij ∈ L∞(Ωι),uι

0 ∈ [H1(Ωι)]N . Let coefficients of thermal
expansion βij be such that βij = βji.

To simplify the formulation of stress-strain relations, the entries of any sym-
metric (N × N) matrix {τij} will be denoted by the vector notation {τj},
j = 1, ..., jN , where jN = N(N + 1)/2, as follows:

τi = τii for 1 ≤ i ≤ N, τ3 = τ12 for N = 2,

τ4 = τ23, τ5 = τ31, τ6 = τ12 for N = 3.
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Likewise, we replace the symmetric matrices (eij(u)), (βij) by vectors {ej(u)},
{βj}. Then the stress-strain relation (2.7) can be rewritten as

τi(u
ι, T ι) =

jN∑

j=1

Aι
ijej(u

ι)− βι
i(T

ι − T ι
0), 1 ≤ i, j ≤ jN , 1 ≤ ι ≤ s, (2.7′)

where Aι is a symmetric (jN × jN) matrix, Aι
ik ∈ L∞(Ωι) ,ι = 1, ..., s.

It is readily seen that

τ : e ≡ τijeij =
N∑

i=1

τiei + 2
jN∑

i=N+1

τiei. (2.14)

Therefore, we can write

cι
ijkleijekl =

jN∑

i,j=1

Bι
ijeiej,

where Bι is a symmetric (jN × jN) matrix such that

Bι
ij = Aι

ij for 1 ≤ i, j ≤ N,

Bι
ij = 0 for 1 ≤ i ≤ N, N + 1 ≤ j ≤ jN ,

Bι
ij = 2Aι

ij for N + 1 ≤ i, j ≤ jN .

Let us denote

W1 = us
ι=1H

1(Ωι), ‖w‖W1 = (
∑

ι≤s

‖wι‖2
1,Ωι)

1
2 ,

W = us
ι=1[H

1(Ωι)]N , ‖v‖W = (
∑

ι≤s

∑

i≤N

‖vι
i‖2

1,Ωι)
1
2 .

Assume that the matrices Bι are positive definite, so that

0 < aι
0 ≤

jN∑

i,j=1

Bι
ijξiξj|ξ|−2 ≤ aι

1 < +∞ for a.a. x ∈ Ωι, ξ ∈ IRjN ,

where the constants aι
0, aι

1 are independent of x ∈ Ωι.

Finally, let us assume that

measN−1(Γu ∩ ∂Ωι) > 0 and measN−1(Γτ ∩ ∂Ωι) > 0 for all ι = 1, ..., s,

and let u0 ∈ W , T0 ∈ W1, gkl
c ∈ L∞(Γkl), βι

j ∈ L∞(Ωι). Let us introduce the
space of virtual displacements

V = {v ∈ W |v = 0 on Γu}

and the set of admissible displacements

K = {v ∈ V |vk
n − vl

n ≤ 0 on ∪k,l Γkl}.
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We shall define a weak solution of the problem P2, which is motivated by
the standard procedure: multiply equations (2.6) by a test vector function,
integrate by parts over the domain Ω, use the boundary conditions and assume
that u0 satisfies conditions uk

0n − ul
0n = 0 on ∪k,lΓ

kl.

Definition 2.2 We say that the function u is a weak solution of problem P2,
if u− u0 ∈ K and

a(u,v − u) + jg(v)− jg(u)≥S(v − u, T ) ∀v ∈ u0 + K, (2.15)

where

a(u,v) =
s∑

ι=1

∫

Ωι

3∑

i,j=1

Bι
ijei(u

ι)ej(v
ι) dx, (2.16)

jg(v) =
∑

k,l

∫

Γkl

gkl|vk
t − vl

t| ds, (2.17)

S(v, T ) =
s∑

ι=1

∫

Ωι

(F ι
i v

ι
i + (T ι − T ι

0)β
ι : e(vι)) dx +

∫

Γτ

Pivi ds, (2.18)

where the weak solution T of the problem P1 in S(v, T ) is inserted.

3 Numerical solution and domain decomposition algoritm

In this section we deal with the elastic part of problem only, as the domain
decomposition algorithm for the thermal part of the problem is the standard
problem solved in the literature.

3.1 Formulation of the problem

We follow the approach proposed by Le Tallec (1994) and group every two
subdomains which share a contact area Γkl into a single “nonlinear” subdo-
main. We use discretization by linear finite elements and the concept of local
Schur complements. The resulting nonlinear equation on the interface is solved
by successive approximations. For the starting approximation we choose the
solution of the linear problem, where the unilateral contact conditions are
replaced by the classical bilateral contact conditions without friction.

Let every domain Ω
ι

be divided into J(ι) subdomains Ωι
i, i ≤ J(ι). Let us

denote Γι
i = ∂Ωι

i\∂Ωι, ι ∈ {1, ..., s}, i ∈ {1, ..., J(ι)}, a part of dividing line and

let Γ = ∪s
ι=1 ∪J(ι)

i=1 Γι
i represent the whole interface boundary. Let us introduce

T ι = {j ∈ {1, . . . , J(ι)} : Γc ∩ Ω
ι
j = ∅}, ι = 1, . . . , s (3.1)
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the set of all indices of subdomains of the domain Ωι which are not adjacent
to a contact, and let

Ω∗j = ∪[i,ι]∈ϑΩ
ι
i, (3.2)

where ϑ = {[i, ι] : ∂Ωι
i ∩ Γc 6= ∅}, represent subdomains in unilateral contact.

Suppose that Γ ∩ Γc = ∅. Then for the trace operator γ : [H1(Ωι
i)]

N →
[L2(∂Ωι

i)]
N we have

VΓ = γK|Γ = γV |Γ. (3.3)

Let γ−1 : VΓ ∈ V be an arbitrary linear inverse mapping satisfying

γ−1v = 0 on ∪k,l Γkl ∀v ∈ VΓ. (3.4)

Let us introduce restrictions R
ι
i : VΓ → Γι

i; Lι
i : Lι → Ωι

i; jι
gi : jι

g → Γkl;
aι

i(., .) : aι
i(., .) → Ωι

i; V (Ωι
i) → Ωι

i and let

V 0(Ωι
i) = {v ∈ V | v = 0 on (∪s

ι=1Ω
ι)\Ωι

i}

be the space of functions with zero traces on Γι
i.

Theorem 3.1 A function u is a solution of a global problem P2, if and only if:

its trace u = γu|Γ on the interface Γ satisfies the condition

s∑

ι=1

J(ι)∑

i=1

[aι
i(u

ι
i(u), γ−1w)− Sι

i(γ
−1w)] = 0 ∀w ∈ VΓ, u ∈ VΓ, (3.5)

and its restrictions uι
i(u) ≡ u|Ωι

i
satisfy

(i) the condition

aι
i(u

ι
i(u), ϕϕϕϕϕϕϕϕϕϕι

i) = Sι
i(ϕϕϕϕϕϕϕϕϕϕ

ι
i)

∀ϕϕϕϕϕϕϕϕϕϕι
i ∈ V 0(Ωι

i), uι
i(u) ∈ V (Ωι

i), γuι
i(u)|Γι

i
= R

ι
iu,

(3.6)

for i ∈ T ι, ι = 1, . . . , s, and

(ii) the condition

∑

[i,ι]∈ϑ

aι
i(u

ι
i(u), ϕϕϕϕϕϕϕϕϕϕι

i) + jι
g(u

ι
i(u) + ϕϕϕϕϕϕϕϕϕϕι

i)− jι
g(u

ι
i(u)) ≥ ∑

[i,ι]∈ϑ

Sι
i(ϕϕϕϕϕϕϕϕϕϕ

ι
i) (3.7)

for all ϕϕϕϕϕϕϕϕϕϕ ≡ (ϕϕϕϕϕϕϕϕϕϕι
i, [i, ι] ∈ ϑ), ϕϕϕϕϕϕϕϕϕϕι

i ∈ V 0(Ωι
i), and such that

u + ϕϕϕϕϕϕϕϕϕϕ ∈ K, γuι
i(u)|Γι

i
= R

ι
iu for [i, ι] ∈ ϑ. (3.8)

For the proof see Daněk, Hlaváček, Nedoma (2004).
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3.2 The Schur complements and the linearized problem

The aim of this subsection is to analyze in detail the condition (3.5) and to
employ it for numerical computation of problem P2. We will introduce the
concept of the local Schur complement.

Let us denote V ι
i = {γv|Γι

i
| v ∈ K} = {γv|Γι

i
| v ∈ V }

and define a particular case of the restriction of the inverse mapping γ−1(.)|Ωι
i

by 



Tr−1
iι : V ι

i → V (Ωι
i), γ(Tr−1

iι uι
i)|Γι

i
= uι

i,

i = 1, . . . , J(ι), ι = 1, . . . , s,

aι
i(Tr−1

iι uι
i,v

ι
i) = 0 ∀vι

i ∈ V 0(Ωι
i), T r−1

iι uι
i ∈ V (Ωι

i),

for i ∈ T ι, ι = 1, . . . , s.

(3.9)

For [i, ι] ∈ ϑ we complete the definition by the boundary condition (3.4), i.e.

Tr−1
iι uι

i = 0 on ∪k,l Γkl. (3.10)

Definition 3.1 By the local Schur complement for i ∈ T ι it is meant the
operator S ι

i : V ι
i → (V ι

i )∗ defined by

〈S ι
iu

ι
i,v

ι
i〉 = aι

i(Tr−1
iι uι

i, T r−1
iι vι

i) ∀uι
i,v

ι
i ∈ V ι

i (3.11)

and in the matrix form by

Sι
iU

ι

i = (Aiι −B
T
iι

◦
A
−1

iι Biι)U
ι

i, (3.12)

where

Aiι =




◦
Aiι Biι

BT
iι Aiι


 ,Uι

i =




◦
U

ι

i

U
ι

i


 , (3.13)

where the nodes of U
ι

i belong to Γι
i and the internal degrees of freedom are

◦
U

ι

i.

For subdomains which are in contact we will define a common local Schur
complement as follows:

Definition 3.2 The common local Schur complement for the union Ωk
i ∪ Ωl

j

(where Γkl
c ⊂ Γc and [i, k] ∈ ϑ, [j, l] ∈ ϑ) is the operator

Skl : (V k
i × V l

j ) → (V k
i × V l

j )∗ = (V k
i )∗ × (V l

j )∗

defined by the relation

〈
Skl(yk

i ,y
l
j), (v

k
i ,v

l
j)

〉
= ak

i (u
k
i (y

k
i ), T r−1

ik vk
i ) + al

j(u
l
j(y

l
j), T r−1

jl vl
j)

∀(vk
i ,v

l
j) ∈ V k

i × V l
j .

(3.14)
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where Tr−1
ik and Tr−1

jl are defined by means of (3.9) and (3.10) and uk
i (y

k
i ),

ul
j(y

l
j) denote the solution of the problem (3.7).

The condition (3.5) can be expressed by means of local Schur complements.
Then we have

Lemma 3.2 The trace u = γu|Γ of the weak solution satisfies the following
condition

∑s
ι=1

∑
i∈T ι

〈
Sι

iu
ι
i,v

ι
j

〉
+

∑
k,l

〈
Skl(uk

i ,u
l
j), (v

k
i ,v

l
j)

〉
=

∑s
ι=1

∑J(ι)
i=1 Lι

i(Tr−1
iι vι

i)

∀v ∈ VΓ, [i, k] ∈ ϑ, [j, l] ∈ ϑ, Γkl ⊂ Γc,

(3.15)
where vι

i = R
ι
iv,uι

i = R
ι
iu.

Then we will solve the equation (3.15) on the interface Γ in the dual space
(VΓ)∗. We rewrite (3.15) into the following form

S0U + SCONU = F , (3.16)

where

S0 =
∑s

ι=1

∑
i∈T ι(R

ι
i)

TSι
iR

ι
i, SCON =

∑
k,l R

T
klSklRkl,

F =
∑s

ι=1

∑J(ι)
i=1 (R

ι
i)

T (Tr−1
iι )TSι

i

(3.17)

and Rkl(u) = (R
k
i (u), R

l
j(u))T ,u ∈ VΓ, [i, k] ∈ ϑ, [j, l] ∈ ϑ, Γkl ⊂ Γc.

Equation (3.16) will be solved by successive approximations, because the
operators Skl and therefore SCON are nonlinear. We choose a suitable initial

approximation U
0
, for instance the solution of the global primal problem,

where the boundary conditions on Γc are replaced by the linear “classical”
bilateral conditions (which correspond with gkl ≡ 0 and jg(u) ≡ 0)

uk
n − ul

n = 0, τ kl
t = 0 on Γc0 ≡ ∪k,lΓ

kl
0 (3.18)

where Γkl
0 are parts of Γkl, measΓkl

0 > 0, chosen a priori (e.g. for example
Γkl

0 = Γkl). On Γkl\Γkl
0 we consider homogeneous conditions of zero surface

load P k
j = P l

j = 0, j = 1, . . . , N .

Then we replace the set K by K0 = {v ∈ V | vk
n − vl

n = 0 on ∪k,lΓ
kl
0 } and

therefore, we will solve the following problem

u0 = arg minv∈K0

(1

2
a(v,v)− S(v)

)
(3.19)

and we set U
0

= γu0|Γ. The auxiliary problem (3.19) represents a linear elliptic
boundary value problem of a system of “s” elastic bodies with bilateral contact
and it can be solved by the domain decomposition method again.
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3.3 Solution of the auxiliary problem

Instead of (2.15) we will solve the variational equation for u0 ∈ K0:

a(u0,v) = S(v) ∀v ∈ K0. (3.20)

Thus an analogue of Theorem 3.1 can be derived, where the condition (3.7)
is replaced by the corresponding variational equality and where a mapping
γ−1

0 : VΓ → V satisfies conditions (γ−1
0 v)k

n − (γ−1
0 v)l

n = 0 on ∪k,lΓ
kl
0 .

We introduce operators of Schur complements. For i ∈ T ι, ι = 1, ..., s, we define
the mappings Tr−1

iι according to (3.9) and the local Schur complemenents S0ι
i

by (3.11).

Definition 3.3 The common local Schur complement for the union Ωk
i ∪Ωl

j,
where Γkl

0 ⊂ Γc and [i, k] ∈ ϑ, [j, l] ∈ ϑ,

S0kl : (V k
i × V l

j ) → (V k
i )∗ × (V l

j )∗

is defined by the following relation

〈
S0kl(u0k

i ,u0l
j ), (vk

i ,v
l
j)

〉
= ak

i (u
k
i (u

k
i ), T r−1

ik vk
i ) + al

j(u
l
j(u

l
j), T r−1

jl vl
j)

∀(vk
i ,v

l
j) ∈ V k

i × V l
j ,

(3.21)
where Tr−1

ik and Tr−1
jl are defined by means of (Tr−1

ik vk
i )n− (Tr−1

jl vk
j )n = 0 on

Γkl
0 and

ak
i (Tr−1

ik vk
i ,w

k
i ) + al

j(Tr−1
jl vl

j,w
l
j) = 0 ∀wk

i ∈ V 0(Ωk
i ),w

l
j ∈ V 0(Ωl

j)

such that (wk
i )n − (wl

j)n = 0 on Γkl
0 .

(3.22)

A global Schur complement S is defined by

S = S0 +
∑

k,l

(Rkl)
TS0klRkl, (3.23)

where S0 is defined in (3.17). and S0kl by (3.21), (3.22).

Then the condition coresponding to (3.15) of the auxiliary problem on the
interface implies the equation

SU = F in the dual space (VΓ)∗. (3.24)

To solve problem (3.24) the method of preconditioned conjugate gradients can
be used. In Daněk, Hlaváček, Nedoma (2004) the so-called Neumann-Neumann
preconditioner is derived.
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3.4 Successive approximation method and its convergence

Recall that we have to solve the problem (3.16) by successive approximations.

Now U
0

is the solution of the auxiliary problem, i.e. U
0

= γu0|Γ, where u0

is a solution of problem (3.19). The next approximations U
k
, k = 1, 2, . . ., we

find as the solution of the following linear problem

S0U
k

= F − SCONU
k−1

, k = 1, 2, . . . . (3.25)

To solve problem (3.25), we use again the method of preconditioned conjugate
gradients with new “reduced” preconditioner of the Neumann - Neumann type
(see Daněk, Hlaváček, Nedoma (2004)).

Definition 3.4 We define “injection operators”
◦
D

ι

i: V ι
i → VΓ, ι = 1, . . . , s and i ∈ T ι

by the following relation. For the nodes on Γk
i∪Γl

j (Γkl ⊂ Γc, [i, k] ∈ ϑ, [j, l] ∈ ϑ)
◦
D

ι

i v(Pm) = v(Pn) if Pn ∈ Γk
i ∪ Γl

j, (3.26)

◦
D

ι

i v(Pm) = v(Pn)ρι
i/ρ

T (3.27)

if the m-th degree of freedom corresponds with the n-th degree of V ι
i and

Pn /∈ Γk
i ∪ Γl

j and ◦
D

ι

i v(Pm) = 0 in the remaining cases. (3.28)

Here ρι
i denotes the local measure of stiffness of the subdomain Ωι

i (e.g. the
average of the Young modulus) and

%T =
∑

Pl∈Ω̄ι
j

%ι
j

is the sum of ρι
j over all subdomains Ω̄ι

j, which contain the point Pl.

Let us realize that the kernel

Z ι
i = Ker Aiι, ι = 1, . . . , s, i ∈ T ι (3.29)

may contain nonzero elements, i.e. displacements of a rigid body Ωι
i. Therefore,

we introduce the orthogonal complement of the kernel Z ι
i in the space V (Ωι

i),
so that

Q(Ωι
i)⊕Ker Aiι = V (Ωι

i). (3.30)

Let us define the “coarse” reduced space of traces

V0H =
s∑

ι=1

∑

i∈T ι

◦
D

ι

i γZ ι
i (3.31)

and a linear set V ⊥
0H ∈ (VΓ)∗ of functionals by the relation

S ∈ V ⊥
0H ⇔ 〈S, z〉 = 0 ∀z ∈ V0H . (3.32)
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The set V ⊥
0H will be used for starting values of the preconditioned conjugate

gradients algorithm. Now we will analyze the convergence of the method of
sucessive approximation (3.25), to the solution of the original problem (3.16)
in the space (VΓ)∗.

To this end, we introduce a seminorm and a norm.

Definition 3.5 Let H0 be an orthogonal complement of the subspace V0H in
VΓ. Let us introduce a seminorm

|R̄cv|ϑ =


∑

k,l

[ak
i (Tr−1

ik R̄k
i v, T r−1

ik R̄k
i v) + al

j(Tr−1
jl R̄l

jv, T r−1
jl R̄l

jv)]




1
2

(3.33)

where Γkl ⊂ Γc, [i, k] ∈ ϑ and [j, l] ∈ ϑ.

Lemma 3.3 The expression

‖u‖2
Q = 〈S0u,u〉 (3.34)

defines a norm in H0.

Definition 3.6 Let a mapping T : H0 → H0 be defined by the relation

〈S0(Ty),v〉 = 〈F − SCON(y),v〉 ∀v ∈ H0. (3.35)

Assumption 3.4 Let a constant β exist such that

|R̄cu|ϑ ≤ β ‖u‖Q ∀u ∈ H0. (3.36)

Lemma 3.5 If assumption 3.4 is satisfied, the mapping T is well-defined, i.e.
for all y ∈ H0 there exists a unique element Ty ∈ H0, satisfying (3.35).

For the proof see Daněk, Hlaváček, Nedoma (2004).

Theorem 3.6 Let the assumption 3.4 hold. Then

‖T (y)− T (w)‖Q ≤ 2 β2 ‖y −w‖Q y,w ∈ H0. (3.37)

For the proof see Daněk, Hlaváček, Nedoma (2004).

Corollary 3.7 Let the assumption 3.4 hold with β <
√

2/2. Then the mapping
T is contractive on H0. The successive approximations (3.25) converge to a

12



fixed point of the mapping T , which represents a solution U of the equation
(3.16). The following error estimate holds

‖Uk −U‖Q ≤ (2β2)k (1− 2β2)−1‖U0 − TU0‖Q, k = 1, 2, . . . (3.38)

for any U0 ∈ H0.

For the proof see Nečas, Hlaváček (1981, §11.7).

Remark 3.1 The assumption 3.4 with β <
√

2/2 is fulfilled if the union
∪[i,ι]∈ϑΩ

ι
i of subdomains, adjacent to the contact boundary Γc, is “small” with

regard to the union of remaining subdomains and if the triangulation of every
Ωι

i, [i, ι] ∈ ϑ is sufficiently fine near Γι
i.

4 Worst scenario problem for uncertain input data

4.1 Sets of uncertain input data

Let us assume that the input data

A = {Bι, κι,W ι, T1,F
ι, βι,P,u0, g

kl, ι = 1, ..., s, ∀k, l}

are uncertain. Let the only available information about them be that they
belong to some sets of admissible data, i.e.,

A ∈ Uad ⇔ Bι ∈ UBι

ad , κι ∈ Uκι

ad , W ι ∈ UW ι

ad , T1 ∈ UT1
ad , Fι ∈ UF ι

ad , βι ∈ Uβι

ad ,

P ∈ UP
ad, u0 ∈ Uu0

ad , gkl ∈ U gkl

ad .

Assume that all the bodies Ωι are piecewise homogeneous, so that partitions
of Ω

ι
exist such that

Ω
ι
= ∪jι

j=1Ω
ι
j, Ωι

j ∩ Ωι
k = ∅ for j 6= k, 1 ≤ ι ≤ s, (4.1)

Γkl = ∪Qkl
q=1Γ

kl
q , Γkl

q ∩ Γkl
p = ∅ for q 6= p, ∀k, l (4.2)

and let the data Bι, κι,Fι,W ι, βι be piecewise constant with respect to the
partition (4.1).

Let us denote

Γu ∩ ∂Ωι = Γι
u, ι = 1, ..., s, (4.3)

Γτ ∩ ∂Ωι = Γι
τ , ι ≤ s. (4.4)

13



We define the sets of admissible matrices:

UBι

ad = {(jN × jN) symmetric matrices Bι :

Bι
ik(j) ≤ Bik|Ωι

j
= const. ≤ B

ι
ik(j), j ≤ jι, i, k = 1, ..., jN}

(4.5)

where Bι(j) and B
ι
(j) are given (jN × jN) symmetric matrices, ι = 1, ..., s.

Assume that positive constants cι
B(j) exist such that

λmin(
1
2
(Bι(j) + B

ι
(j)))− ρ(1

2
(B

ι
(j)−Bι(j))) ≡ cι

B(j)

for j = 1, .., jι, ι = 1, .., s,
(4.6)

where λmin and ρ denotes the minimal eigenvalue and the spectral radius,
respectively. Next, we define the set of admissible matrices

Uκι

ad = {(N ×N)− symmetric matrices κι :

κι
ik(j) ≤ κι

ik|Ωι
j
= const. ≤ κι

ik(j), j ≤ jι, i, k ≤ N}
(4.7)

where κι(j) and κι(j) are given (N ×N) symmetric matrices, j = 1, .., jι, ι =
1, ..., s. Assume that positive constants cι

κ(j) exist such that

λmin(
1

2
(κι(j) + κι(j)))− ρ(

1

2
(κι(j)− κι(j))) ≡ cι

κ(j) for j ≤ jι, ι ≤ s, (4.8)

where λmin and ρ denotes the minimal eigenvalue and the spectral radius,
respectively. Then the matrices κι(j) = κι|Ωι

j
are positive definite for any

κι ∈ Uκι

ad , ι ≤ s, j ≤ jι.

Now, let us introduce

U
F ι

i
ad = {f ∈ L∞(Ω) : F ι

i(j) ≤ f |Ωι
j
= const. ≤ F

ι
i(j), j ≤ jι}, (4.9)

for i ≤ N, ι ≤ s, where F ι
i(j) and F

ι
i(j) are given constants;

UW ι

ad = {w ∈ L∞(Ω) : W ι(j) ≤ w|Ωι
j
= const. ≤ W

ι
(j), j ≤ jι}, (4.10)

for ι ≤ s, where W ι(j) and W
ι
(j) are given constants;

UT1
ad = {T ∈ L∞(Γτ ) : T 1(ι) ≤ T |Γι

τ
= const. ≤ T 1(ι), ι ≤ s}, (4.11)

where T 1(ι) and T 1(ι) are given constants;

Uu0i
ad = {u ∈ L∞(Γu) : u0i(ι) ≤ u|Γι

u
= const. ≤ u0i(ι), ι ≤ s}, (4.12)

where u0i(ι) and u0i(ι), i = 1, .., N, are given constants;

UPi
ad = {p ∈ L∞(Γτ ) : P i(ι) ≤ p|Γι

τ
= const. ≤ P i(ι), ι ≤ s}, (4.13)
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where P i(ι) and P i(ι), i = 1, ..., N are given constants;

U
βι

i
ad = {b ∈ L∞(Ω) : βι

i
(j) ≤ b|Ωι

j
= const. ≤ βι(j), j ≤ jι}, (4.14)

for i ≤ jN , ι ≤ s, where βι
i
(j) and β

ι

i(j) are given constants;

U gkl

ad = {g ∈ L∞(Γkl) : g|
Γ

kl
q
∈ C(0),1(Γ

kl
q ); 0 ≤ g(s) ≤ gkl

q ,

|dg/ds| ≤ Ckl
g a.e. in Γkl

q , q ≤ Qkl},
(4.15)

for all pairs k, l under consideration, where gkl
q and Ckl

g are given positive

constants. Here C(0),1 denotes the space of Lipschitz-continuous functions.

Finally, we introduce the set of admissible data, as follows:

Uad = uι≤sU
Bι

ad × uι≤sU
κι

ad × uι≤s,j≤NU
F ι

i
ad × uι≤sU

W ι

ad ×
×UT1

ad × uι≤s,i≤NUβι

ad × ui≤NUPi
ad × ui≤NUu0i

ad × uk,lU
gkl

ad .
(4.16)

To obtain T1 ∈ W1, we have to extend the boundary values T1 ∈ UT1
ad into

the domains Ωι properly, i.e. satisfying the conditions T k
1 = T l

1 on all Γkl. As
a consequence at some intersections Γkl ∩ Γτ (if any), additional continuity
conditions are necessary in the definition of UT1

ad . An analogous remark holds
for the data u0i ∈ Uu0i

ad and Γkl ∩ Γu.

Definition 4.1 Instead of the bilinear forms and functionals b(T, z), a(u,v),
jg(v), s(z), S(v, T ) introduced in Definitions 2.1 and 2.2, we will write b(A; T, z),
a(A;u,v), jg(A;v), s(A; z), S(A;v, T ) for any A ∈ Uad.

Lemma 4.1 There exist positive constants ci, i = 0, 1, ..., 6 independent of
A ∈ Uad, such that

b(A; z, z) ≥ C0‖z‖2
W 1 ∀z ∈ V1, (4.17)

|b(A; z, y)| ≤ C1‖z‖W 1‖y‖W 1 ∀z, y ∈ W1, (4.18)

a(A;v,v) ≥ C2‖v‖2
W ∀v ∈ V, (4.19)

|a(A;v,w)| ≤ C3‖v‖W‖w‖W ∀v,w ∈ W, (4.20)

|s(A; z)| ≤ C4‖z‖0,Ω ∀z ∈ V1, (4.21)

|S(A;v,T )| ≤ C5(‖v‖0,Ω + ‖v‖0,Γτ + ‖T − T0‖0,Ω‖v‖W ) ∀v,w ∈ W,

(4.22)

|jg(A;u)− jg(A;v)| ≤ C6

∑

ι≤s

‖uι−vι‖0,∂Ωι ∀u,v ∈ W. (4.23)
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Proof: By Theorem 5 in (Rohn (1994)), we have

λmin(κ
ι(j)) ≥ cι

κ(j) ∀κι ∈ Uκι

ad , ι ≤ s, j ≤ jι.

As a consequence, we obtain

b(A; z, z) ≥ ( min
ι≤s,j≤jι

cι
κ(j))

∑

ι≤s

∫

Ωι

|grad zι|2 dx. (4.24)

Then we have ∫

Ωι

|grad zι|2 dx ≥ Cι
1‖zι‖2

1,Ωι (4.25)

for any restriction zι of z ∈ V1. Combining (4.24) and (4.25), we arrive at
(4.17).

The inequality (4.18) follows from the definitions of Uκι

ad immediately.

Arguing as in (4.24), we may write

a(A;v,v) ≥ ( min
ι≤s,j≤jι

cι
B(j))

∑

ι≤s

∫

Ωι

jN∑

k=1

e2
k(v

ι) dx. (4.26)

The Korn’s inequality
∫

Ωι

e(vι) : e(vι) dx ≥ Cι
2‖vι‖2

1,Ωι (4.27)

holds for any restriction vι of v ∈ V . Since

1

2
e : e ≤

jN∑

k=1

e2
k, (4.28)

(recall the formula (2.14)), combining (4.26)-(4.28), we obtain the inequality
(4.19). The inequality (4.20) is an easy consequence of the definitions of UBι

ad .

Thus, we may write

|s(A; z)| ≤ ∑

ι≤s

(max
j≤jι

|W ι
(j)|)

∫

Ωι

|zι| dx ≤ C4‖z‖0,Ω

Next, we have

|S(A;v, T )|≤ ∑
ι≤s(N

1
2 (max{|F ι

i(j)|, |F ι
i(j)|}) ‖vι‖0,Ωι+

+C(max β
ι
(j))

∫
Ωι 2|T ι − T ι

0| ‖e(vι)‖ dx+

+N
1
2 (max{|P i(ι)|, |P i(ι)|}) ‖vι‖0,Γι

τ
) ≤

≤ C5(‖v‖0,Ω + ‖v‖0,Γτ + ‖T − T0‖0,Ω‖v‖W ).
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Finally, we may write

|jg(A;u)− jg(A;v)|≤ ∑
k,l

∫
Γkl gkl|(uk

t − vk
t )− (ul

t − vl
t)| ds ≤

≤ ∑
k,l maxq≤Qkl

gkl
q

∫
Γkl |(uk

t − vk
t )− (ul

t − vl
t)| ds ≤

≤ C
∑

k,l

∑
i≤N(‖uk

i − vk
i ‖0,Γkl + ‖ul

i − vl
i‖0,Γkl) ≤

≤ C6
∑

ι≤s ‖uι − vι‖0,∂Ωι .

Proposition 4.2 There exists a unique weak solution T (A) of the problem
P1 for any A ∈ Uad and u(A) of problem P2 for any A ∈ Uad.

For the proof see Hlaváček, Nedoma (2004).

4.2 Criteria of worst scenario

To find the “worst”, i.e. the most “dangerous” input data A in the set Uad,
we need a criterion, i.e. a functional, which depends on the solution T (A) or
u(A) of problem P1 or P2, respectively.

Next, we present several examples of such criteria.

Let Gr ⊂ Ω, r = 1, ..., r, be (small) subdomains, adjacent to the boundaries
∂Ωι, for example. We can define

Φ1(T ) = max
r≤r

ϕr(T ) (4.29)

where ϕr(T ) = (measN Gr)
−1

∫
Gr

T dx;

let G′
r ⊂ Γu, r ≤ r and

Φ2(T ) = max
r≤r

ψr(T ) (4.30)

where ψr(T ) = (measN−1 G′
r)
−1

∫
G′r T ds.

Next, we define

Φ3(u) = max
r≤r

χr(u) (4.31)

where χr(u) = (measN Gr)
−1

∫
Gr

uini(Xr)dx; where n(Xr) is the unit outward
normal at a fixed point Xr ∈ ∂Ωι ∩ ∂Gr (if Gr ⊂ Ωι) to the boundary ∂Ωι;

Φ4(u) = max
r≤r

χ′r(u) (4.32)

where χ′r(u) = (measN−1 G′
r)
−1

∫
G′r uini(Xr)ds; G′

r ⊂ ∪ι≤s∂Ωι\Γu.
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Since the weak solution u(A) of our problem (2.15) depends on T (A), then
u(A) = u(A; T (A)) and instead of Φi(u) we write Φi(A;u, T ). Another choice
is

Φ5(A;u, T ) = max
r≤r

ωr(A;u, T ) (4.33)

where ωr(A;u, T ) = (measN Gr)
−1

∫
Gr

I2
2 (τ(A;u, T )) dx.

Here I2(τ) denotes the intensity of shear stress (see, e.g. Nečas, Hlaváček
(1981)), i.e. the second fundamental invariant of the stress tensor deviator τD,
i.e.

I2
2 (τ) =

∑3
i,j=1 τD

ij τD
ij , τD

ij = τij − 1
3
τkkδij;

I2
2 = 2

3
[τ 2

11 + τ 2
22 + τ 2

33 − (τ11τ22 + τ11τ33 + τ22τ33) + 3(τ 2
12 + τ 2

13 + τ 2
23)] forN =3.

In (4.33), τ(A;u, T ) is defined by the formula (2.7). For orthotropic material
and plane strain, we have to insert τ13 = τ23 = 0.

If the friction can be neglected (as in Hlaváček, Nedoma (2002b), Nečas,
Hlaváček (1981), Nedoma (1998)), we set gkl

c ≡ 0 and define e.g.

Φ6(A;u, T ) = max
r≤r

µr(A;u, T ); (4.34)

µr(A;u,T ) = (measN Gr)
−1

∫
Gr

(−τn(A;u, T )) dx; and Gr is a small subdo-
main adjacent to Γc.

Now we formulate the worst scenario problems as follows:

find
A0i = arg max

A∈Uad

Φi(T (A)), i = 1, 2, (4.35)

and
A0i = arg max

A∈Uad

Φi(u(A), T (A)), i = 3, 4, 5, 6, (4.36)

where T (A) are u(A) are weak solutions of the problem P1 and P2, respec-
tively.

Remark 4.1 Since the weak solution u(A) of problem P2 depends on T (A),
u(A) ≡ u(A; T (A)) and we write Φi(u(A), T (A)), instead of Φi(u(A)) for
i = 3, 4 in (4.36).

4.3 Stability of weak solutions

To analyze the solvability of worst scenario problems (4.35),(4.36) we have to
study the mapping A 7→ T (A) and A 7→ u(A, T (A)). First, we introduce the
following decomposition of A ∈ Uad: A = {A′, A′′}, where

A′ = {uι≤s uj≤jι
κι(j),uι≤s uj≤jι

W ι(j),uι≤sT
ι
1}, A′ ∈ IRp1 ,
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p1 = (jN + 1)
∑

ι≤s jι + s

and

A′′ = {uι≤s uj≤jι
Bι(j),uι≤s uj≤jι

Fι(j),uι≤sP
ι,

uι≤su
ι
0,uι≤s uj≤jι

βι(j),uk,l uq≤Qkl
gkl(q)},

A′′ ∈ IRp2 × uk,l uq≤Qkl
C(Γ

kl
q ), p2 = (

∑
ι≤s jι)[(3 + jN)jN/2 + N(1 + 2s)].

We are going to show the continuity of the mappings A′ 7→ T (A′) for A′ ∈
U ′

ad = uι≤sU
κι

ad × uι≤sU
W ι

ad × U
T ι
1

ad and A 7→ u(A, T (A′)) for A′′ ∈ U ′′
ad =

uι≤sU
Bι

ad ×uι≤s,j≤NUF ι

ad ×uι≤s,i≤NUβι

ad×ui≤NUPi
ad×ui≤NUu0i

ad , respectively. Since
the problem discussed is quasi-coupled, we have the following theorem and
lemma:

Lemma 4.3 If An ∈ Uad, An → A in U , where U = IRp1+p2×uk,luq≤Qkl
C(Γ

kl
q ),

and un ⇀ u weakly in W then

a(An;un,v) → a(A;u,v) ∀v ∈ W, (4.37)

S(An;un, T ) → S(A;u, T ) ∀T ∈ W1, (4.38)

jg(An;u) → jg(A;u). (4.39)

For the proof see Hlaváček, Nedoma (2004).

Theorem 4.4 Let A′ ∈ U ′
ad, A′

n → A′ in IRp1 as n →∞. Then

T (A′
n) → T (A′) in W1.

Let An ∈ Uad, An → A in U ≡ IRp1+p2 × uk,l uq≤Qkl
C(Γ

kl
q ). Then

u(An) → u(A) in W.

For the proof see Hlaváček, Nedoma (2004).

4.4 Existence of a solution of the worst scenario problem

To prove the existence of a solution of the worst scenario problem, we will use
the following lemma.

Lemma 4.5 Let Φi(T ), i = 1, 2, be defined by (4.29), (4.30) and let Tn → T
in W1, as n →∞. Then

lim
n→∞Φi(Tn) = Φi(T ), i = 1, 2.
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Let Φi(u), i = 3, 4, be defined by (4.31) and (4.32) and let un → u in W , as
n →∞. Then

lim
n→∞Φi(un) = Φi(u), i = 3, 4.

Let Φi(A;u,T), i = 5, 6, be defined by (4.33) and (4.34). Let An → A in U ,
An ∈ Uad, un → u in W and Tn → T in L2(Ω). Then

lim
n→∞Φi(An,un, Tn) = Φi(A,u, T ), i = 5, 6.

The main result gives the next theorem:

Theorem 4.6 There exists at least one solution of the worst scenario problems
(4.35), (4.36), i=1,...,6.

Proof: Let us denote

Ji(A) = Φi(T (A)), i = 1, 2.

If An ∈ Uad, An → A in U as n →∞, then A′
n → A in IRp1 and T (An) → T (A)

in W1 by virtue of Theorem 4.4. Using Lemma 4.5, we obtain

Ji(An) → Ji(A),

so that Ji is continuous on the set Uad.

It is easy to show that Uad is compact subset of U , if we employ Arzela-Ascoli

Theorem for U gkl

ad .

As a consequence, Ji attains its maximum on Uad.

The same argument can be applied to

Ji(A) = Φi(A;u(A)T (A)), i = 3, 4, 5, 6.

Here we employ Theorem 4.4 and Lemma 4.5 to verify the continuity of Ji on
the set Uad.

5 Numerical experiments

For approximations of the problem we can employ the finite element method
and the algorithm of Section 3 based on the nonoverlapping domain decom-
position approach developed in Daněk, Hlaváček, Nedoma (2004).
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The geomechanical model problem describing a loaded tunnel which is crossing
by a deep fault and based on the geomechanical theory and models having
connection with radioactive waste repositories (Nedoma (1998)). A geometry
of the problem is in Fig. 1.
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Figure 1. Geometry of the problem.

Material parameters: 2 regions with Young’s modulus E = 5, 2× 109[Pa] and
Poisson’s ratio ν = 0, 18. Specific gravity is 2, 45× 104[Pa/m].

Boundary conditions: Prescribed displacement (2, 5 × 10−2; 0) [m] on 1-2.
Pressure 0, 5×107[Pa] on 1-4 and 2-8 and 1×107[Pa] on 8-3. Bilateral contact
boundary on 3-4. Unilateral contact boundary: 5-6 and 7-8. Given slip limit
is 106[Pa]. Zero surface forces on the tunnel wall.

Discretization statistics: 12 subdomains, 5501 nodes, 9676 elements, 10428
unknowns, 89 unilateral contact conditions, 466 interface elements.

Convergence statistics: 21 iterations of the PCG algorithm for the auxiliary
problem, 15 iterations of the successive approximations method for accuracy
10−6, total 39 iterations of the PCG algorithm for the original problem.

Fig. 2 represents detail of deformations and Fig. 3 shows displacements in
a neighbourhood of the tunnel. On Figs. 4 and 5 details of principal stresses
are displayed in a neighbourhood of the tunnel.
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Figure 2. Detail of deformations (enlarging factor is 10).

−5 0 5

−8

−6

−4

−2

0

2

4

6

8

4.31014e−02

Figure 3. Detail of displacements on the tunnel wall.
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Figure 4. Detail of principal stresses on the tunnel wall.
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Figure 5. Detail of principal stresses in a neighbourhood of the tunnel.
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6 Conclusions

The theory presented in this paper represents extension of geomechanical prob-
lems solved in Nedoma (1987), (1998) for the case if input data, i.e. thermal
conductivity and elastic coefficients, body and surface forces, thermal sources,
body and surface forces, coefficients of thermal expansion, boundary values,
coefficient of friction on contact boundaries, etc. are uncertain. Since the the-
ory is an extension of problems solved in Nedoma (1998) it can be used for
mathematical models connected with the safety of construction and of opera-
tion of the radioactive waste repositories. The models involve input data (as
thermal conductivity and elastic coefficients, body and surface forces, ther-
mal sources, coefficients of thermal expansion, boundary values, coefficient of
friction on contact boundaries, etc.) which cannot be determined uniquely,
but only in some intervals, given by the accuracy of measurements and the
approximate solutions of identification problems. The “reliable solution” de-
notes the worst case among a set of possible solutions where the degree of
badness is measured by a criterion functional. For the safety of the high level
radioactive waste repositories and other structures under critical conditions we
seek the maximal value of this functional, which depends on the solution of
the mathematical model. Then for the computations of such problems (some
mean values of temperatures, displacements, intensity of shear stresses, prin-
cipal stresses, stress tensor components, normal and tangential components
of the displacement or stress vector on the contact boundaries, etc.) we have
to formulate a corresponding maximization (worst scenario) problem. Then
methods and algorithms known from “optimal design” can be used.

To construct a model of structures under the influence of critical conditions
the influence of global tectonics onto a local area, where the critical structure
is built as well as the influence of the resulting local geomechanical processes
on a critical structure must be taken into account (Nedoma (1998)). Problems
of this kind with uncertain input data are problems with high level radioactive
waste repositories. In the case of the high level radioactive waste repositories
the effects of geodynamical processes in the sense of plate tectonics must be
taken into consideration, namely in regions near tectonic areas (e.g. the Japan
island arc, the Central and South Europe, etc.), but also in the platform re-
gions (as in Sweden, Canada, etc.). But in geomechanics and geodynamics
our information about input data are very questionable as we obtain input
data with very small accuracy. Therefore, the presented method as well as
algorithms used give a worst scenario (anti-optimal) solution of the problem
studied. In the practice it represents a tolerance solution corresponding to the
structures in critical situations and, in fact, the obtained solutions facilitate
to ensure the high security of constructions and operations of structures un-
der critical situation (e.g. high level radioactive waste repositories). Another
example is represented by modelling an interaction between a tunnel wall and
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a rock massif in the radioactive waste repository tunnels or by modelling of a
tunnel crossing by an active deep fault(s), respectively.

The parallel algorithm presented in this paper is based on the nonoverlap-
ping domain decomposition method developed in Daněk, Hlaváček, Nedoma
(2004). The algorithm is derived from the primal formulation in displacement,
uses grouping every two subdomains which share a contact area into a single
“nonlinear” subdomain and follows the approach proposed by Le Tallec (1994)
for linear problems. Other possible variants are to consider mixed formulation
involving both displacements and stresses or dual formulation eliminating the
displacement unknowns from mixed problem.
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