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Basic illustration
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Fredholm integral equation
Given the continuous smooth kernel K (s, t) and the (measured)
data g(s), the aim is to find the (source) function f (t) such that

g(s) =

∫
I
K (s, t)f (t)dt + e(s).

Fredholm integral has smoothing property, i.e. high frequency
components in g are dampened compared to f .

1D example: Barcode reading

sharp barcode f(t) Gaussian blur measured data g(s)
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Example: Fredholm integral equation - discretization

1D example: Barcode reading

sharp barcode f(t) Gaussian blur measured data g(s)

g(s) =

∫
I
K (s, t)f (t)dt + e(s).

Using numerical quadrature formulas, we get a linearized model

b = Ax + e, with A ∈ RN×M , b, e ∈ RN , x ∈ RM ,

where A has the smoothing property.
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2D Example: image deblurring problem

X B

convolution

The data B ∈ Rm×n are naturally discrete. Using the vectorization
x = vec(X ), b = vec(B), we obtain a deconvolution problem

b = Ax + e, with A ∈ RN×N , N = mn.

The model matrix is typically large, sparse and structured.
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Naive solution

If A is square nonsingular, a naive approach is to solve directly

Axnaive = b.

2D Example: image deblurring

X B

convolution

naive solution

deconvolution
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3D Example: Electron microscopy

PSFω ∗ (Pωf + esω) + ebω = gω

• f : Unknown function representing the particle

• ω: Projection angle.

• PSFω: Point Spread Function.

• Pω: X-Ray transform: Pωf (s) :=
∫∞
−∞ f (t · ω + s)dt, s ∈ ω⊥.

• esω, e
b
ω: Structure and background noise functions.

• gω: Measured data.

• ∗: Convolution operator.
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Discrete model (one projection)

PSFω ∗ (Pωf + esω) + ebω =gω Continuous model

Cω
(
P̄ω f̄ + ēsω

)
+ ēbω =ḡω Discrete model

Figure: 3D grid discretization with unknown voxel values.
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Linear model
Consider a linear ill-posed problem

b = Ax + e,

where the noise vector e

• is an unknown perturbation (rounding errors, errors of
measurement, noise with physical sources, etc.),

• with the unknown noise level

δnoise ≡ ‖ e ‖/‖ b ‖ << 1

Properties of the problem:

• A dampens high frequencies (smoothing property),

• exact right-hand side is smooth, but noise is not,

• small changes in b cause large changes in the solution.
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Naive solution - noise amplification

b = Ax + e, where ‖Ax‖ � ‖e‖ BUT

A−1b = x + A−1e, where ‖x‖ � ‖A−1e‖

1D Example: shaw(400), δnoise ≈ 1e − 4, white noise
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Naive solution - noise amplification

Singular value decomposition (SVD): R = rank(A)

A = UΣV T =
R∑
j=1

uTj σjvj ,

Σ = diag{σ1, . . . , σR , 0, . . . , 0},

where U = [u1, . . . , uN ] and V = [v1, . . . , vM ] are unitary matrices.
Then

xnaive ≡ A†b =
∑R

j=1

uTj b
exact

σj
vj︸ ︷︷ ︸

xexact

+
∑R

j=1

uTj e

σj
vj︸ ︷︷ ︸

noise component

.
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Discrete Picard condition (DPC)

• singular values of A decay quickly without a noticeable gap;

• singular vectors ui , vj of A represent increasing frequencies;

• for the exact right-hand side, |(bexact, uj)| decay faster than
the singular values σj of A (DPC)
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Noise amplification

White noise: |(e, uj)|, j = 1, . . . ,N do not exhibit any trend
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Components corresponding to small σj ’s are dominated by eHF .
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2D imaging problem

For a blurred image B

xnaive =
∑R

j=1

uTj vec(B)

σj︸ ︷︷ ︸
scalar

vj , X = mtx(x),

is a linear combination of right singular vectors vj .

It can be further rewritten as

X naive =
∑R

j=1

uTj vec(B)

σj
Vj , Vj = mtx(vj) ∈ Rm×n

using singular images Vj (the reshaped right singular vectors).
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2D imaging problem: Singular images

Singular images Vj ∈ Rm×n for 2D image deblurring model
(Gaußian blur, zero BC, artificial colors).
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Filtered solution

Unwanted components can be suppressed by

xfiltered =
∑R

j=1
φj

uTj b

σj
vj , xfiltered = VΦΣ−1UTb,

where Φ = diag(φ1, . . . , φN). In image deblurring problem

X filtered =
∑R

j=1
φj

uTj vec(B)

σj
Vj .

The filter factors are given by some filter function

φj = φ(j ,A, b, . . .).
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Classical regularization approaches

Spectral filtering (e.g., truncated SVD, Tikhonov): suitable
for solving small ill-posed problems.

Projection on smooth subspaces: suitable for solving large
ill-posed problems. The dimension of projection space represents a
regularization parameter.

Hybrid techniques: combination of outer iterative regularization
with a spectral filtering of the projected small problem.

... etc.
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Large scale problems

• Direct filtering of SVD is too costly.

• The method should avoid work with full A.

• The method should take advantage of data properties
(sparsity, structure, ...).

• The approximation must be dominated by low frequencies,
high frequencies must be dumped.

We try to look for an approximation in some low dimensional
subspace Wk dominated by low frequencies.
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Projection methods

Consider a subspace

Wk = span(w1, . . . ,wk) ⊂ RN , Wk = [w1, . . . ,wk ] ∈ RN×k ,

such that W T
k Wk = Ik and wj are dominated by low frequencies.

Then we solve the projected problem

minx∈Wk
‖b − Ax‖ ⇔ miny∈Rk ‖b − (AWk)y‖

⇔ W T
k (ATA)Wky = W T

k ATb.

The question is, how to choose the basis wj?
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Projection using DCT basis

An example of a suitable basis is the DCT basis

w1 =
√

1
N (1, 1, . . . , 1)T ,

wj =
√

2
N

(
cos
(

(j−1)π
2N

)
, cos

(
3(j−1)π

2N

)
, . . . cos

(
(2N−1)(j−1)π

2N

))T
,

for j > 1.
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Projection using DCT basis

Example: Solutions computed using the DCT basis w1, . . . ,wk ,
k = 1, . . . , 10

A-priori known properties of the true solution (symmetry,
periodicity, etc.) can be imposed by well-chosen basis.
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Projection using DCT basis

Advantage:

With a fixed set of basis Fourier-type vectors, computations can be
performed efficiently, the basis is not stored.

Disadvantage:

The basis vectors are not always adapted to the particular problem.
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Krylov subspace methods

When A is large/sparse/not given explicitly, approximation by
projection onto a low dimensional Krylov subspace is advantageous.

Kk(C , d) ≡ Span{d , Cd , . . . ,C k−1d}

K1(C , d) ⊆ K2(C , d) ⊆ . . .

For A square: Kk(A, b) ... GMRES, CG, MINRES
~Kk(A, b) ... RRGMRES, MINRES-II

For A general: Kk(ATA,ATb) ... LSQR, LSMR, CGLS

xk −→ xnaive
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Key role of orthonormal basis

Generating Krylov vectors are smooth. In order to approximate less
smooth features, it is necessary to use orthonormal basis.

Example: Generating vectors and orthonormal basis vectors wi

(computed by Arnoldi process) for K5(A, b)
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Key role of orthonormal basis

Example: Generating vectors and orthonormal basis vectors wi in
frequency basis U (left singular vectors of A)
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Inheritance of DPC

Example: Singular values σi of A and singular values τi of Hk

from the Arnoldi process for k = 2, 5, 8, 5, 50, 80

The projected problem Akyk ≈ bk then subsequently inherits DPC
properties of the original problem.
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Semiconvergence of Krylov subspace methods

With growing k :
• we include HF features to the solution,
• noise e propagates to the projection.

small k = over-smoothed solution large k = noisy solution

X0 

X20 

X40 

Xnaive 

X100 

Xexact 
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Semiconvergence of Krylov subspace methods

Example: True errors and residual norms of LSQR approximations
xk for the problem shaw(400) contaminated by white noise e

Number of iterations = regularization parameter
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Stopping criteria

Since b − Axexact = e, a reasonable requirement could be

rk ≡ b − Axk ≈ e.

Stopping criteria: this idea can be used if a priori information is
available, e.g., ‖e‖ in DP, spectral properties of e (white) in NCP.

However, e is often not known.

Understanding noise propagation:

• consider Kk(ATA,ATb) for a general A,

• study how e propagates to the projections,

• study the relation between e and r1, r2, . . . .
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Golub-Kahan iterative bidiagonalization (GK)

Given w0 = 0, s1 = b / β1, β1 = ‖b‖, for j = 1, 2, . . .

αj wj = AT sj − βj wj−1 , ‖wj‖ = 1 ,

βj+1 sj+1 = Awj − αj sj , ‖sj+1‖ = 1 .

Output:

• Sk = [s1, . . . , sk ] - orthonormal bases of K(AAT , b),

• Wk = [w1, . . . ,wk ] - orthonormal bases of K(ATA,ATb),

• bidiagonal matrices of the normalization coefficients

Lk =


α1

β2 α2

. . .
. . .

βk αk

 , Lk+ =

[
Lk

eTk βk+1

]
.
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Regularization based on GK

xk = Wkyk , where the columns of Wk span Kk(ATA,ATb)

LSQR method: minimize the residual

min
x∈Kk (ATA,ATb)

‖Ax − b‖ = min
y∈Rk

‖Lk+y − β1e1‖

CRAIG method: minimize the error

min
x∈Kk (ATA,ATb)

‖x∗ − x‖ = min
y∈Rk

‖Lky − β1e1‖

LSMR method: minimize AT rk

min
x∈Kk (ATA,ATb)

‖AT (Ax − b)‖ = min
y∈Rk

‖LTk+1Lk+y − β1α1e1‖
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Noise propagation in GK

Recall that we are interested in the relation between

r̃ ≡ b − Ax̃ ←→ e.

Since xk = Wkyk ∈ Kk(ATA,ATb), then

rk ≡ b − AWkyk = β1s1 − Sk+1Lk+yk = Sk+1pk ∈ Kk(AAT , b).
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Analyzed in [H., Plešinger, Strakoš - 09], [H., Plešinger, Kub́ınová - 17].
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Exact and noise component in sk

• s1 = b/||b|| = Ax/||b||+ e/||b||
• for k = 2, 3, ...

βk+1sk+1 = Awk − αksk

Thus

sk = (·) + γke
HF , where γk ≡ ϕk−1(0) = (−1)k−1 1

βk

k−1∏
j=1

αj

βj
.

Here (·) is smooth and the amplification factor γk of eHF is the
absolute term of the Lanczos polynomial,

sk+1 = ϕk(AAT )b, ϕk ∈ Pk .
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Exact and noise component in sk

sk = sexactk + snoisek
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Noise propagation in GK - behavior

The size of γk (on average) rapidly grows until it reaches the noise
revealing iteration krev. Then it decreases.

Example: shaw(400), reortogonalization in GK

-0.2

0

0.2
k = 3

-0.2

0

0.2
k = 4

-0.2

0

0.2
k = 5

-0.2

0

0.2
k = 6

-0.2

0

0.2
k = 7

-0.2

0

0.2
k = 8

sk , δnoise = 10−3

0 5 10 15 20
k

100

105

|ϕ
k
(0
)|

10−9

10−6

10−3

white noise

0 5 10 15 20
k

100

102

|ϕ
k
(0
)|

red
white
violet

colored noise
39/64



Inverse problems Regularization by projection Propagation of noise Analysis of residuals Hybrid methods Conclusion

Influence of the loss of orthogonality

Comparison GK with and without reorthogonalization:
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Aggregation may be necessary [Gergelits, H., Kub́ınová - 18].
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Noise propagation in GK - large 2D problems

Example: δnoise ≈ 10−2, various physical noise, without ReOG
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There is no particular noise revealing iteration k , but rather a noise
revealing phase represented by a group of subsequent iterations k ,
see [H., Plešinger, Kub́ınová - 17].
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Noise propagation in GK - large 2D problems

Example: seismictomo, δnoise ≈ 10−2, without ReOG
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Cumulative periodogram (examining distribution of frequencies) of
s10 is flatter, thus s10 belong to the noise revealing phase.
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Application in regularization process

• Stopping criterion - before noise propagates seriously to sk .

• If krev can be identified, we can estimate the high frequency
part of e:

skrev ≡ (·) + γkreve
HF ≈ γkreve

HF

gives the estimate by scaled left bidiagonalization vector

ẽ ≡ γ−1
krev

skrev .

• We can obtain a cheap estimate of the unknown noise level
‖ e ‖/‖ b ‖, see [H., Kub́ınová, Plešinger - 16] for application in
image deblurring.
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Noise estimate for shaw(400)
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Comparison of noise reduction to spectral filtering
shaw(400), white noise
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Regularization based on GK

Recall that we are interested in the relation between

r̃ ≡ b − Ax̃ ←→ e.

For GK based methods with xk = Wkyk ∈ Kk(ATA,ATb), we have

rk = Sk+1pk .
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Based on noise propagation in Sk , we can analyze CRAIG, LSQR,
LSMR by studing pk , see [H., Kub́ınová, Plešinger - 17].
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Residual of CRAIG method

min
x∈Kk (ATA,ATb)

‖x∗ − x‖ = min
y∈Rk

‖Lky − β1e1‖ , xk = Wkyk

Theorem: xCRAIG
k is the exact solution to the consistent system

AxCRAIG
k = b − ϕk(0)−1sk+1.

Consequently, ‖rCRAIG
k ‖ = |ϕk(0)−1| ≡ |γk+1|−1 reaches its

minimum in the noise revealing iteration.
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Comparison of the error and the residual

Measuring the size of the residual seems to be a valid stopping
criterion for CRAIG. The minimal error is reached approximately at
the iteration with the minimal residual.
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Residual of LSQR method

min
x∈Kk (ATA,ATb)

‖Ax − b‖ = min
y∈Rk

‖Lk+y − β1e1‖ , xk = Wkyk

Theorem: The residual corresponding to xLSQR
k satisfies

rLSQR
k =

1∑k
l=0 ϕl(0)2

k∑
l=0

ϕl(0)sl+1.

Consequently, the size of the component of rk in the direction of sj
is proportional to the amount of propagated noise eHF in sj .
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Comparison of CRAIG and LSQR

Typically, LSQR can reach better approximation than CRAIG.
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k ‖

‖eLSQR
k ‖

|ϕk(0)|
−1

shaw(400), white

5 10 15

100
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‖eCRAIG

k ‖

‖eLSQR
k ‖

|ϕk(0)|
−1

gravity(400), Poisson

10 20 30 40

10-2

100
‖eCRAIG

k ‖

‖eLSQR
k ‖

|ϕk(0)|
−1

phillips(400),
white, no ReOG
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Residual of LSMR method

min
x∈Kk (ATA,ATb)

‖AT (Ax − b)‖ = min
y∈Rk

‖LTk+1Lk+y − β1α1e1‖

Components of rk in LSMR behave similarly as in LSQR. The
errors resemble as long as |ψk(0)| (the absolute term of the
Lanczos polynomial for GK vectors wk) grows rapidly.
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Comparison of noise and residuals
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Comparison of the methods - large 2D problems

Example: seismictomo(100,100,200), white noise,
δnoise = 0.01, A ∈ R20000×10000, no ReOG

20 40 60 80 100
k

102

‖rCRAIG
k ‖ = |ϕk(0)|

−1

‖xCRAIG
k − x‖

CRAIG error and residual

20 40 60 80 100
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103

keCRAIG
k k

keLSQR
k k

j'k(0)j!1

CRAIG vs LSQR

20 40 60 80 100
k

100

101

102

102

103

104

105keLSQR
k k

keLSMR
k k

jAk(0)j!1

LSQR vs LSMR
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Comparison of reconstructions

Reconstructions for seismictomo(100,100,200). Iteration is
selected as k = argmaxk=1,2,...|ϕk(0)|.

exact solution noisy projections LSQR LSMR
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Outline

1. Inverse problems

2. Regularization by projection

3. Propagation of noise

4. Analysis of residuals

5. Hybrid methods

6. Conclusion
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Basic idea

Two stage inner (Krylov projection) - outer (direct) regularization.

Algorithm: Hybrid LSQR

• Golub-Kahan iterative bidiagonalization
• Lk+yk ≈ β1e1

• Tikhonov regularization of the projected problem
• yλ

k = arg min
y
{‖Lk+y − β1e1‖2

2 + λ2‖y‖2
2}

• Parameter selection approach.

• Back projection xλk = Wky
λ
k

• Stopping criterion.

See [Calvetti, Reichel - 03], [Chung, Nagy, O’Leary - 08], [Kilmer, Hansen,
Español - 07], [Renaut, H., Mead - 10], [Chung, Palmer - 15], ...
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2D image deblurring

Examples: Satelite and grain test image, Gaussian blur, white
noise with δnoise = 0.05.
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2D image deblurring

Example: LSQR and LSMR with inner Tikhonov regularization

• overcomes the semiconvergence phenomenon,

• two regularization parameters (outer - number of iterations,
inner - direct regularizer) must be tuned.
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2D image deblurring - reconstructions
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Outline

1. Inverse problems

2. Regularization by projection

3. Propagation of noise

4. Analysis of residuals

5. Hybrid methods

6. Conclusion
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Conclusion

• Iterative projective regularization is a powerfull tool to solve
large problems.

• Noise propagates subsequentially to the projections, early
stopping is necessary.

• Combinations of projection and direct regularization is
advantageous.

• Constraints (e.g. nonnegativity or sparsity of the solution) can
be incorporated.
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Selected references
Software:

• S. Gazzola, P. C. Hansen, and J. G. Nagy: IR Tools Version 1.0,
2019.

• P. C. Hansen, and J. S. Jrgensen: AIR Tools II Version 1.0, 2018.

• P. C. Hansen: Regularization Tools Version 4.0, 2007.

Overview books:

• R C. Gonzalez, R. E. Woods: Digital Image Processing, Pearson,
4th Edition 2018.

• M. Hanke: A Taste of Inverse Problems: Basic Theory and
Examples, SIAM, 2017.

• P. C. Hansen: Discrete Inverse Problems: Insight and Algorithms,
SIAM, 2010.

• P. C. Hansen, J. G. Nagy, and D. P. O’Leary: Deblurring Images:
Matrices, Spectra, and Filtering, SIAM, 2006.
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Thank you for your
attention!

64/64


	Inverse problems
	Regularization by projection
	Propagation of noise
	Analysis of residuals
	Hybrid methods
	Conclusion

